首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Survivin: a novel target for indomethacin-induced gastric injury   总被引:8,自引:0,他引:8  
BACKGROUND & AIMS: Nonsteroidal anti-inflammatory drugs (NSAIDs) cause gastrointestinal erosions and ulcers. Apoptosis is one of the mechanisms. The role of survivin, an antiapoptosis protein, in NSAID-induced gastric injury is unknown. We examined the role of survivin in NSAID-induced gastric mucosal and gastric cell injury. METHODS: We examined: (1) the effects of indomethacin (nonselective NSAID), celecoxib and NS-398 (cyclooxygenase [COX]-2-selective NSAIDs), SC-560 (a COX-1-selective NSAID), and SC-560 plus celecoxib on survivin expression and extent of injury in rat gastric mucosa; (2) the effects of indomethacin, NS-398, SC-560, and SC-560 plus NS-398 on survivin expression and injury in gastric epithelial (RGM-1) cells; and (3) the effects of survivin suppression with small interfering RNA (siRNA) on RGM-1 cell integrity at baseline and following indomethacin injury. RESULTS: Indomethacin treatment dose-dependently reduced survivin protein levels and caused severe injury of gastric mucosa and RGM-1 cells. Suppression of survivin expression with siRNA in RGM-1 cells caused cell damage and increased susceptibility to injury by indomethacin. Celecoxib treatment caused exfoliation of the mucosal surface epithelium, but neither caused deep erosions or altered survivin expression. Neither NS-398 nor SC-560 treatment altered survivin levels or produced injury in vivo or in vitro. COX-1 and COX-2 inhibitor combination caused injury in vivo and in vitro but did not decrease survivin expression. CONCLUSIONS: (1) Indomethacin, but not selective COX-1 or COX-2 inhibitors alone or in combination, reduces survivin expression in gastric mucosal cells and (2) significant reduction of survivin precedes greater severity of gastric injury.  相似文献   

2.
This study was done to examine the role of cyclooxygenase (COX) in lipopolysaccharide (LPS)-induced gastroprotection and gastric stasis. In conscious rats, LPS dose and time dependently increased gastric luminal fluid accumulation. LPS decreased blood flow (laser Doppler) and prevented gastric injury from acidified ethanol at time points before significant fluid accumulation occurred. LPS increased COX-2 but not COX-1 expression. In contrast, LPS decreased gastric mucosal prostaglandin synthesis. LPS-induced gastric luminal fluid accumulation was negated by both nonselective COX inhibition with salicylate and selective COX-2 inhibition with NS-398 but not by selective COX-1 inhibition with SC-560. Neither salicylate nor NS-398 blocked LPS-induced gastroprotection. LPS-induced gastroprotection does not depend entirely on accumulation of luminal fluid and is independent of COX-1 and COX-2. However, the ability of LPS to cause gastric stasis and increase gastric luminal fluid accumulation involves COX-2. This work was supported by NIGMS Grants GM-38529 and GM-08792.  相似文献   

3.
BACKGROUND: We have previously shown that the non-selective cyclooxygenase (COX) inhibitor indomethacin retards recovery of intestinal barrier function in ischaemic injured porcine ileum. However, the relative role of COX-1 and COX-2 elaborated prostaglandins in this process is unclear. AIMS: To assess the role of COX-1 and COX-2 elaborated prostaglandins in the recovery of intestinal barrier function by evaluating the effects of selective COX-1 and COX-2 inhibitors on mucosal recovery and eicosanoid production. METHODS: Porcine ileal mucosa subjected to 45 minutes of ischaemia was mounted in Ussing chambers, and transepithelial electrical resistance was used as an indicator of mucosal recovery. Prostaglandins E1 and E2 (PGE) and 6-keto-PGF1alpha (the stable metabolite of prostaglandin I2 (PGI2)) were measured using ELISA. Thromboxane B2 (TXB2, the stable metabolite of TXA2) was measured as a likely indicator of COX-1 activity. RESULTS: Ischaemic injured tissues recovered to control levels of resistance within three hours whereas tissues treated with indomethacin (5x10(-6) M) failed to fully recover, associated with inhibition of eicosanoid production. Injured tissues treated with the selective COX-1 inhibitor SC-560 (5x10(-6) M) or the COX-2 inhibitor NS-398 (5x10(-6) M) recovered to control levels of resistance within three hours, associated with significant elevations of PGE and 6-keto-PGF1alpha compared with untreated tissues. However, SC-560 significantly inhibited TXB2 production whereas NS-398 had no effect on this eicosanoid, indicating differential actions of these inhibitors related to their COX selectivity. CONCLUSIONS: The results suggest that recovery of resistance is triggered by PGE and PGI2, which may be elaborated by either COX-1 or COX-2.  相似文献   

4.
OBJECTIVES: We sought to investigate the time course of morphine-induced delayed cardioprotection and examine the role of cyclooxygenase (COX) in this cardioprotective effect. BACKGROUND: Cyclooxygenase-2 has been shown to be essential for the delayed cardioprotection induced by ischemic preconditioning and delta-opioid agonists. METHODS: Male mice were subjected to 45 min of coronary artery occlusion followed by 120 min of reperfusion. Expressions of COX-2 and COX-1 were assessed by Western blotting, and the myocardial prostaglandin (PG)E2 and 6-keto-PGF(1-alpha) contents were measured using enzyme immunoassays. RESULTS: A powerful infarct-sparing effect appeared 24 and 48 h after morphine preconditioning and faded after 72 h. After 24 h, the anti-infarct effect was associated with enhanced myocardial levels of COX-2, PGE2, and 6-keto-PGF(1-alpha), and no changes in COX-1 protein levels were found. Cardioprotection and increases in PGE2 and 6-keto-PGF(1-alpha) were completely abolished by the COX-2-selective inhibitor NS-398 and the non-selective COX inhibitor indomethacin, whereas the COX-1-selective inhibitor SC-560 had no effect. After 48 h, up-regulation of myocardial PGE2 and 6-keto-PGF(1-alpha) was also observed, and COX-1 expression was enhanced markedly, but only a slight increase in COX-2 expression was apparent. Cardioprotection and the increases in PGE2 and 6-keto-PGF(1-alpha) 48 h after morphine administration were abrogated only by indomethacin, and not by SC-560 or NS-398. CONCLUSIONS: Morphine confers delayed cardioprotection via a COX-dependent pathway; COX-2 is essential for the cardioprotection observed in the initial stage (24 h), whereas, in the final stage (48 h), cardioprotection is mediated by COX-1 in concert with COX-2.  相似文献   

5.
We examined the effect of cyclooxygenase (COX) inhibitors on dextran sulfate sodium (DSS)-induced ulcerative colitis in rats and investigated the role of COX isozymes in the pathogenesis of this model. Experimental colitis was induced by treatment with 2.5% DSS in drinking water for 6 days. Indomethacin (a nonselective COX inhibitor), SC-560 (a selective COX-1 inhibitor), or celecoxib (a selective COX-2 inhibitor) was given PO twice daily for 6 days, during the first 3 or last 3 days of the experimental period. Daily treatment with 2.5% DSS for 6 days caused damage to the colon, with a decrease in body weight gain and colon length as well as an increase of myeloperoxidase (MPO) activity. All COX inhibitors given for 6 days significantly worsened the severity of DSS-induced colonic damage with increased MPO activity. The aggravation was also observed by SC-560 given for the first 3 days or by celecoxib given for the last 3 days. The expression of COX-2 mRNA in the colon was upregulated on day 3 during DSS treatment, with significant increase of prostaglandin E2 PGE2 production. The PGE2 content on day 3 during DSS treatment was inhibited by both indomethacin and SC-560, but not by celecoxib; on day 6 it was suppressed by both indomethacin and celecoxib, but not SC-560. These results suggest that endogenous prostaglandins (PGs) afford protection against colonic ulceration, yet the COX isozyme responsible for the production of PGs differs depending on the stage of ulceration; COX-1 in the early stage and COX-2 in the late stage.  相似文献   

6.
BACKGROUND AND AIMS: The present study examined the effects of NS-398, a specific cyclo-oxygenase-2 inhibitor, on gastric mucosal cell kinetics and gastric wound healing following acid-induced injury. METHODS: Male Sprague-Dawley rats were fasted for 24 h and then 0.6 mol/L hydrochloric acid (HCl; 1 mL) was administered into the stomach; NS-398 or indomethacin was administered to the animals 10 min after the acid. Levels of constitutive cyclo-oxygenase (COX-1) and mitogen-inducible cyclo-oxygenase (COX-2) in the gastric mucosa were analysed using western blotting and immunohistochemical staining. The grade of the lesion was assessed using planimetry and histological examination, including immunohistochemistry for proliferating cell nuclear antigen (PCNA). RESULTS: Although there was strong expression of COX-1, there was minimal expression of COX-2 in the gastric mucosa. Expression of COX-2 was enhanced mainly in surface epithelial cells and neck cells following HCl administration. Gastric mucosal ulcers and erosions healed within 48 h, during which time the proliferative zone expanded in the control animals. Indomethacin and NS-398 suppressed the expansion of the proliferative zone and delayed the healing of the gastric injury. CONCLUSION: The present study demonstrated that cyclo-oxygenase-2 inhibitors delay gastric wound healing by suppressing expansion of the mucosal proliferative zone. These results provide evidence that cyclo-oxygenase-2 has an important role in gastric mucosal regeneration.  相似文献   

7.
BACKGROUND & AIMS: Selective cyclooxygenase (COX)-2 inhibitors produce less gastric damage than conventional nonsteroidal anti-inflammatory drugs (NSAIDs), suggesting that NSAIDs cause damage by inhibiting COX-1. We tested this hypothesis in rats by using a selective COX-1 inhibitor (SC-560). METHODS: The effects of SC-560, celecoxib (selective COX-2 inhibitor), or a combination of both inhibitors on gastric damage and prostaglandin synthesis were determined. Selectivity of the drugs for COX-1 vs. COX-2 was assessed in the carrageenan-airpouch model. A COX-1-preferential inhibitor, ketorolac, was also evaluated. The effects of these inhibitors on leukocyte adherence to vascular endothelium and on gastric blood flow were assessed. RESULTS: SC-560 markedly reduced gastric prostaglandin synthesis and platelet COX-1 activity, but spared COX-2 and did not cause gastric damage. Celecoxib did not affect gastric prostaglandin E(2) synthesis and did not cause gastric damage. However, the combination of SC-560 and celecoxib invariably caused hemorrhagic erosion formation, comparable to that seen with indomethacin. Ketorolac caused damage only at doses that inhibited both COX isoforms, or when given with a COX-2 inhibitor. Celecoxib, but not SC-560, significantly increased leukocyte adherence, whereas SC-560, but not celecoxib, reduced gastric blood flow. CONCLUSIONS: Inhibition of both COX-1 and COX-2 is required for NSAID-induced gastric injury in the rat.  相似文献   

8.
BACKGROUND AND AIMS: Prostacyclin has been shown to play a role in hyperdynamic circulation in portal hypertension. Recently, a new subtype of cyclo-oxygenase (COX), COX-2, which acts as an inducible synthase in response to various stimuli. The aim of this study was to investigate whether COX-2 contributes to portal hypertension and whether a COX-2 blockade induces the same sort of gastric mucosal injury as a COX-1 blockade. METHODS: Portal hypertension (PHT) in rats was induced by a two-step ligation of the portal vein. The mean arterial pressure (MAP), portal pressure (PP), visceral blood flow volume (BFV), serum levels of 6-keto-prostaglandin F1alpha (PGF1alpha), thromboxane B2 (TXB2) and gastric mucosal injury induced by pure ethanol were all measured in PHT rats receiving different inhibitors (indomethacin, a highly selective COX-1 inhibitor; NS-398, a highly selective COX-2 inhibitor). Control rats treated by a sham operation were also studied. RESULTS: The NS-398 administration significantly decreased PP to the same extent as indomethacin at doses of 5 and 10 mg/kg in PHT rats after a 60 min administration, while neither inhibitor affected the control rats. Both inhibitors significantly increased PP after a 30 min administration in the PHT and control rats at a dose of 5 mg/kg while both inhibitors significantly decreased PP after 60 min administration only in the PHT rats. Portal vein ligation treatment induced a significant increase in PP and BFV of the portal vein, gastric mucosa, oesophageal mucosa and the serum levels of 6-keto-PGF1alpha and TXB2, while portal vein ligation treatment induced a significant decrease in BFV of the liver. Both blockades increased MAP and decreased PP and BFV in the splanchnic area and decreased the serum level of 6-keto-PGF1alpha and TXB2 in the PHT rats, while neither blockade modified any parameters in the control rats, except that indomethacin administration significantly decreased the BFV of the gastric mucosa. Indomethacin administration significantly increased the ulcer index (UI). The NS-398 had no effect on UI in either the PHT or control rats. Only indomethacin significantly increased the number of rats demonstrating gastric mucosal long lesions (> 2 cm) in the PHT rats. CONCLUSION: In the PHT rats, prostaglandin seemed to contribute to portal hypertension. Both COX blockades reduced PP and BFV of the portal vein and gastric mucosa. NS-398, a selective COX-2 inhibitor, may, therefore, improve portal hypertension without inducing gastric mucosal injury.  相似文献   

9.
We previously reported that inhibition of both COX-1 and COX-2 is required for the gastrointestinal ulcerogenic properties of nonsteroidal anti-inflammatory drugs (NSAIDs). Inhibition of COX-1 up-regulates COX-2 expression, and the prostaglandins (PGs) produced by COX-2 help to maintain the mucosal integrity during inhibition of COX-1. In the present study we investigated whether dexamethasone damages rat gastrointestinal mucosa during inhibition of COX-1 and further developed the idea that COX-2 expression is a key event in the ulcerogenic actions of NSAIDs. Dexamethasone was given p.o. in the absence or presence of SC-560 (a selective COX-1 inhibitor), and the stomach or intestine was examined 8 or 24 hr later, respectively. Neither dexamethasone nor SC-560 alone damaged the gastrointestinal mucosa. In the presence of SC-560, however, dexamethasone damaged the stomach but not small intestine. SC-560 decreased PGE2 levels in both tissues, with a gradual recovery accompanying the up-regulation of COX-2 expression, and both the recovery of PGE2 levels and the expression of COX-2 were inhibited by dexamethasone. In the animals treated with SC-560, iNOS expression was up-regulated in the intestinal but not the gastric mucosa, and this response was also inhibited by dexamethasone. These results suggest a risk from steroid therapy in the stomach when COX-2 expression is up-regulated. Dexamethasone does not provoke damage in the intestine, despite inhibiting the up-regulation of COX-2 expression under conditions of PG deficiency; at least one of the reasons is that this agent prevents the expression of iNOS, a major factor in the pathogenesis of intestinal lesions.  相似文献   

10.
The expression of COX-2 is up-regulated in the rat stomach after administration of indomethacin, and the inhibition of this enzyme may be a key to NSAID-induced gastric damage. The present study investigated the mechanism for COX-2 expression induced in the rat stomach by indomethacin, in relation with the ulcerogenic processes. The animals were given indomethacin or SC-560 p.o., and the gastric mucosa was examined 8 hr later. Indomethacin decreased the mucosal PGE2 content and produced gross damage with gastric hypermotility and the expression of COX-2 mRNA in the mucosa. Although SC-560 did not produce damage, this agent caused a decrease in the PGE2 content and an increase in gastric motility as well as the up-regulation of COX-2 expression, and provoked damage in the presence of rofecoxib. Gastric lesions induced by indomethacin were prevented by both atropine (even in the presence of exogenous HCl) and omeprazole, although the hypermotility response was inhibited only by atropine. The COX-2 expression induced by indomethacin or SC-560 was inhibited by atropine, even in the presence of exogenous HCl, while omeprazole had no effect. The mucosal PGE2 content was decreased by SC-560 at 2 hr but recovered 8 hr later, and this recovery of PGE2 was attenuated by both atropine and rofecoxib but not omeprazole. These results suggested that the COX-2 expression in the stomach following treatment with indomethacin is functionally associated with gastric hypermotility response induced by COX-1 inhibition. Luminal acid does not play a role in the up-regulation of COX-2 expression in the stomach following administration of indomethacin.  相似文献   

11.
NS-398对人胃癌细胞株增殖及COX-2表达的影响   总被引:1,自引:0,他引:1  
目的 体外观察选择性环氧化酶2(COX-2)抑制剂NS-398对人胃癌细胞株SGC7901细胞增殖及COX-2表达的影响。方法 采用噻唑蓝(MTT)法观察NS-398对SGC7901细胞增殖的影响,流式细胞仪(FCM)研究NS-398对SGC790l细胞凋亡的作用.免疫细胞化学观察COX-2蛋白的表达。结果 体外NS-398能减少SGC790l细胞株COX-2的表达.对SGC7901有细胞毒作用.可增加细胞凋亡率。结论 体外NS-398对SGC7901细胞增殖有抑制作用。可能与抑制COX-2表达及诱导细胞凋亡有关。  相似文献   

12.
Although thromboxanes (TXs), whose synthesis is regulated by cyclooxygenase (COX), have been suggested to promote inflammation in the liver, little is known about the role of TXA(2) in leukocyte endothelial interaction during endotoxemia. The present study was conducted to investigate the role of TXA(2) as well as that of COX in lipopolysaccharide (LPS)-induced hepatic microcirculatory dysfunction in male C57Bl/6 mice. We observed during in vivo fluorescence microscopic study that LPS caused significant accumulation of leukocytes adhering to the hepatic microvessels and non-perfused sinusoids. Levels of serum alanine transaminase (ALT) and tumor necrosis factor alpha (TNF alpha) also increased. LPS raised the TXB(2) level in the perfusate from isolated perfused liver. A TXA(2) synthase inhibitor, OKY-046, and a TXA(2) receptor antagonist, S-1452, reduced LPS-induced hepatic microcirculatory dysfunction by inhibiting TNF alpha production. OKY-046 suppressed the expression of an intercellular adhesion molecule (ICAM)-1 in an LPS-treated liver. In thromboxane prostanoid receptor-knockout mice, hepatic responses to LPS were minimized in comparison with those in their wild-type counterparts. In addition, a selective COX-1 inhibitor, SC-560, a selective COX-2 inhibitor, NS-398, and indomethacin significantly attenuated hepatic responses to LPS including microcirculatory dysfunction and release of ALT and TNF alpha. The effects of the COX inhibitors on hepatic responses to LPS exhibited results similar to those obtained with TXA(2) synthase inhibitor, and TXA(2) receptor antagonist. In conclusion, these results suggest that TXA(2) is involved in LPS-induced hepatic microcirculatory dysfunction partly through the release of TNF alpha, and that TXA(2) derived from COX-1 and COX-2 could be responsible for the microcirculatory dysfunction during endotoxemia.  相似文献   

13.
Effects of selective cyclooxygenase-2 (COX-2)inhibitors (NS-398) and nitric oxide (NO)-releasingaspirin (NO-ASA) on gastric ulcerogenic and healingresponses were examined in comparison with nonselective COX inhibitors such as indomethacin and aspirin(ASA). Hypothermic stress (28-30°C, 4 hr) inducedgastric lesions in anesthetized rats with an increase ofacid secretion. The lesions induced by hypothermic stress were markedly worsened by subcutaneousadministration of both indomethacin and ASA but were notaffected by either NS-398 or NO-ASA, although theincreased acid secretion during hypothermia was not affected by any of the drugs. On the otherhand, the healing of gastric ulcers induced in mice bythermal cauterization (70°C, 15 sec) wassignificantly delayed by daily subcutaneousadministration of indomethacin and ASA as well as NS-398, but not by NO-ASA.COX-2 mRNA was not detected in the intact mucosa but waspositively expressed in the ulcerated mucosa, mostpotently on day 3 after ulceration. Prostaglandin contents in the intact mouse stomach werereduced by indomethacin, ASA, and NO-ASA, while theincreased prostaglandin generation in the ulceratedmucosa was inhibited by all drugs including NS-398.After subcutaneous administration of NO-ASA topylorus-ligated rats and mice, high amounts ofNOx were detected in both the gastriccontents and serum. In addition, both NS-398 and NO-ASAshowed an equipotent antiinflammatory effect againstcarrageenan-induced paw edema in rats as compared withindomethacin and ASA. These results suggest that bothindomethacin and ASA not only increased the mucosalulcerogenic response to stress but impaired the healingresponse of gastric ulcers as well. The former actionwas due to inhibition of COX-1, while the latter effectwas accounted for by inhibition of COX-2 and was mimicked by the COX-2-selective inhibitorNS-398. NO-ASA, although it inhibited both COX-1 andCOX-2 activity, had no deleterious effects on gastriculcerogenic and healing responses.  相似文献   

14.
Growth factors upregulate cyclooxygenase-2 (COX-2) expression and extracellular signal-regulated kinase (ERK) activity, yet little is known regarding the interaction between COX-2 and ERK in terms of mitogenic signal transduction pathways in gastric epithelial cells. Therefore, we examined the role of COX-2 in EGF-induced proliferation of gastric epithelial RGM1 cells. EGF treatment significantly induced ERK activity (peaked at 30 min) and significantly increased COX-2 protein (peaked at 6 hr), production of prostaglandin E2 (PGE2), and cell proliferation. MEK inhibitor (PD98059) decreased ERK activity and cell proliferation induced by EGF. The selective COX-2 inhibitor (NS-398) significantly reduced EGF-induced cell proliferation. Exogenous PGE2 partly reversed the NS-398-induced inhibitory action on cell proliferation, clearly indicating the importance of PGE2 in mitogenic pathway. The induction of COX-2 protein by EGF was completely blocked by preincubation with MEK inhibitor. These results suggest that the ERK-COX-2 pathway is critical for EGF-induced proliferation of gastric epithelial cells.  相似文献   

15.
16.
17.
BACKGROUND: Endogenous cyclooxygenase (COX) activity is required to maintain a relatively alkaline surface pH at the gastric luminal surface. AIMS: The purpose of this study was to determine which COX isoform, COX-1 or COX-2, is responsible for regulating the protective surface pH gradient and to test if COX inhibitors also had non-COX mediated effects in vivo. METHODS: Immunofluorescence and western blot analysis showed constitutive expression of both COX isoforms in the normal mouse stomach. We used in vivo confocal microscopy to measure pH near the mucosal surface of anaesthetised COX-1 (-/-), COX-2 (-/-), or wild-type mice of the same genetic background. RESULTS: When the gastric mucosal surface was exposed and superfused (0.2 ml/min) with a weakly buffered saline solution (pH 3) containing the pH indicator Cl-NERF, the pH directly at the gastric surface and thickness of the pH gradient were similar in wild-type and COX-2 (-/-) mice, but COX-1 (-/-) mice had a significantly thinner pH gradient. Addition of indomethacin had minimal effects on the residual surface pH gradient in COX-1 (-/-) mice, suggesting no role for COX-2 in surface pH regulation. Whole stomach perfusion studies demonstrated diminished net alkali secretion in COX-1 (-/-) mice, and application of SC-560 or rofecoxib to wild-type mice and mutant mice confirmed that only COX-1 inhibition reduced alkali secretion. CONCLUSION: COX-1 is the dominant isoform regulating the normal thickness of the protective surface pH gradient in mouse stomach.  相似文献   

18.
目的 观察选择性环氧合酶-2(COX-2)抑制剂对COX-2高表达的结肠癌细胞株HT-29增殖和凋亡的影响,明确以COX2为靶点治疗结肠癌的作用途径以及与COX-2活性、表达水平的相关关系。方法 将选择性COX-2抑制剂NS-398作用于结肠癌细胞系HT29,运用MTT法检测细胞增殖状态。流式细胞仪观察NS-398对细胞凋亡的影响。进一步用逆转录聚合酶链式反应(RT-PCR)检测药物作用前后HT-29中COX-2mRNA表达。ELISA法测定前列腺素E2(PGE2)水平。Western blot检测药物作用前后细胞周期素D1、Bcl-2的表达。结果 结肠癌细胞系HT-29中COX-2 mRNA高表达,NS-398呈时间和剂量依赖性抑制HT-29细胞增殖,促进其凋亡。加入NS-398的HT-29细胞中COX-2mRNA表达水平无明显变化(P〉0.05),PGE2却显著下降(P〈0.01)。72h时空白组与NS-398(75μmol/L)处理组细胞周期素D1、Bcl-2表达水平比值分别为2.21和3.25(P〈0.01),两者表达水平随作用时间延长而下降。结论 选择性COX-2抑制剂NS-398不影响结肠癌细胞COX-2 mRNA表达水平,而与其活性相关(PGE2水平).可能通过细胞周期素D1、Bcl-2影响结肠癌细胞系HT-29的增殖与凋亡,揭示了COX-2为靶点治疗结肠癌的分子机制。  相似文献   

19.
We investigated the protective effect of mild stress on gastric lesions induced by cold-restraint stress, especially concerning prostaglandins (PGs)/cyclo-oxygenase (COX) isozymes. Rats were exposed to severe stress (cold-restraint stress at 10°C for 6 hr) or mild stress (cold-restraint stress at 10°C for 30 min and kept at room temperature for 60 min) followed by severe stress. Severe stress induced gastric lesions, with a concomitant decrease in body temperature (BT). The ulcerogenic response was inhibited by atropine but worsened by indomethacin and SC-560 but not rofecoxib, although none of these agents had any effect on the change in BT. Mild stress suppressed the gastric ulceration and the decrease in BT induced by severe stress, and these effects were reversed by both COX-1 and COX-2 inhibitors. The expression of COX-2 in the stomach was up-regulated from 4 hr after severe stress and this response was slightly expedited by mild stress. COX-2 was also expressed in the hypothalamus under normal and stressed conditions. Quinacrine (phospholipase A2 inhibitor) attenuated the protective effect of mild stress on the ulceration and decrease in BT caused by severe stress. TA-0910 (TRH analogue) at a low dose also prevented the gastric ulceration and the decrease in BT induced by severe stress. These results suggest that mild stress protects against cold-restraint stress-induced gastric ulceration, and the effect is peripherally and centrally mediated by PGs derived from both COX-1 and COX-2 through the activation of phospholipase A2. TRH may also be involved in the protective effect of mild stress, probably through regulation of the thermogenic system.  相似文献   

20.
Background. Endogenous and exogenous prostaglandins (PGs) have been shown to contribute to reducing the gastric injury caused by irritants given subse-quently. The aim of this study was to clarify whether cyclooxygenase-2 (COX-2) protein induced by pretreatment was involved in the prevention of subsequent ethanol-caused gastric injury in mice. Methods. Mice were pretreated with acidified ethanol or saline and then COX-2 protein expression in the stomach was immunohistochemically determined every 8 h. Mice were administered 95% ethanol 24 h after the acidified ethanol pretreatment, and gastric mucosal damage was evaluated macroscopically and histologically. The effects of NS-398 or indomethacin on the 95% ethanol-caused damage were also examined. Results. Acidified ethanol pretreatment induced COX-2 protein expression in lamina propria macrophages of the gastric mucosa, with a peak level 24 h after the pretreatment. The 95% ethanol treatment caused gastric mucosal damage. The degree of the damage was not different between mice pretreated with acidified ethanol and those pretreated with saline. However, NS-398 aggravated the ethanol-caused damage only in mice pretreated with acidified ethanol, while indomethacin aggravated the damage, evaluated histologically, irrespective of the pretreatment. Conclusions. Pretreatment-induced COX-2, in addition to COX-1, seemed to be involved in the defense mechanism through minimizing the damage caused by a subsequent irritant. Received: October 16, 2000 / Accepted: September 14, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号