首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 406 毫秒
1.
华北平原降水的长期趋势分析(英文)   总被引:4,自引:1,他引:3  
The North China Plain (NCP) is the most important food grain producing area in China and has suffered from serious water shortages. To capture variation water availability, it is necessary to have an analysis of changing trends in precipitation. This study, based on daily precipitation data from 47 representative stations in NCP records passed the homogeneity test, analyzed the trend and amplitude of variation in monthly, seasonal and annual precipitation, annual maximum continuous no-rain days, annual rain days, rainfall intensity, and rainfall extremes from 1960 to 2007, using the MannKendall (M-K) test and Sen’s slope estimator. It was found that monthly precipitation in winter had a significant increasing trend in most parts, while monthly precipitation in July to September showed a decreasing trend in some parts of NCP. No significant changing trend was found for the annual, dry and wet season precipitation and rainfall extremes in the majority of NCP.A significant decreasing trend was detected for the maximum no-rain duration and annual rain days in the major part of NCP. It was concluded that the changing trend of precipitation in NCP had an apparent seasonal and regional pattern, i.e., precipitation showed an obvious increasing trend in winter, but a decreasing trend in the rainy season (July to September), and the changing trend was more apparent in the northern part than in the southern and middle parts. This implies that with global warming, seasonal variation of precipitation in NCP tends to decline with an increasing of precipitation in winter season, and a decreasing in rainy season, particularly in the sub-humid northern part.  相似文献   

2.
This paper reports the phenological response of forest vegetation to climate change(changes in temperature and precipitation) based on Moderate Resolution Imaging Spectroradiometer(MODIS) Enhanced Vegetation Index(EVI) time-series images from 2000 to 2015. The phenological parameters of forest vegetation in the Funiu Mountains during this period were determined from the temperature and precipitation data using the Savitzky–Golay filter method, dynamic threshold method, Mann-Kendall trend test, the Theil-Sen estimator, ANUSPLIN interpolation and correlation analyses. The results are summarized as follows:(1) The start of the growing season(SOS) of the forest vegetation mainly concentrated in day of year(DOY) 105–120, the end of the growing season(EOS) concentrated in DOY 285–315, and the growing season length(GSL) ranged between 165 and 195 days. There is an evident correlation between forest phenology and altitude. With increasing altitude, the SOS, EOS and GSL presented a significant delayed, advanced and shortening trend, respectively.(2) Both SOS and EOS of the forest vegetation displayed the delayed trend, the delayed pixels accounted for 76.57% and 83.81% of the total, respectively. The GSL of the forest vegetation was lengthened, and the lengthened pixels accounted for 61.21% of the total. The change in GSL was mainly caused by the decrease in spring temperature in the region.(3) The SOS of the forest vegetation was significantly partially correlated with the monthly average temperature in March, with most correlations being negative; that is, the delay in SOS was mainly attributed to the temperature decrease in March. The EOS was significantly partially correlated with precipitation in September, with most correlations being positive; that is, the EOS was clearly delayed with increasing precipitation in September. The GSL of the forest vegetation was influenced by both temperature and precipitation throughout the growing season. For most regions, GSL was most closely related to the monthly average temperature and precipitation in August.  相似文献   

3.
Based on monthly mean, maximum, and minimum air temperature and monthly mean precipitation data from 10 meteorological stations on the southern slope of the Mt. Qomolangma region in Nepal between 1971 and 2009, the spatial and temporal characteristics of climatic change in this region were analyzed using climatic linear trend, Sen's Slope Estimates and Mann-Kendall Test analysis methods. This paper focuses only on the southern slope and attempts to compare the results with those from the northern slope to clarify the characteristics and trends of climatic change in the Mt. Qomolangma region. The results showed that: (1) between 1971 and 2009, the annual mean temperature in the study area was 20.0℃, the rising rate of annual mean temperature was 0.25℃/10a, and the temperature increases were highly influenced by the maximum temperature in this region. On the other hand, the temperature increases on the northern slope of Mt. Qomolangma region were highly influenced by the minimum temperature. In 1974 and 1992, the temperature rose noticeably in February and September in the southern region when the increment passed 0.9℃. (2) Precipitation had an asymmetric distribution; between 1971 and 2009, the annual precipitation was 1729.01 mm. In this region, precipitation showed an increasing trend of 4.27 mm/a, but this was not statistically significant. In addition, the increase in rainfall was mainly concentrated in the period from April to October, including the entire monsoon period (from June to September) when precipitation accounts for about 78.9% of the annual total. (3) The influence of altitude on climate warming was not clear in the southern region, whereas the trend of climate warming was obvious on the northern slope of Mt. Qomolangma. The annual mean precipitation in the southern region was much higher than that of the northern slope of the Mt. Qomolangma region. This shows the barrier effect of the Himalayas as a whole and Mt. Qomolangma in particular.  相似文献   

4.
To reveal the characteristics of evapotranspiration and environmental control factors of typical underlying surfaces(alpine wetland and alpine meadow)on the Qinghai-Tibetan Plateau,a comprehensive study was performed via in situ observations and remote sensing data in the growing season and non-growing season.Evapotranspiration was positively correlated with precipitation,the decoupling coefficient,and the enhanced vegetation index,but was energy-limited and mainly controlled by the vapor pressure deficit and solar radiation at an annual scale and growing season scale,respectively.Compared with the non-growing season,monthly evapotranspiration,equilibrium evaporation,and decoupling coefficient were greater in the growing season due to lower vegetation resistance and considerable precipitation.However,these factors were restricted in the alpine meadow.The decoupling factor was more sensitive to changes of conductance in the alpine wetland.This study is of great significance for understanding hydro-meteorological processes on the Qinghai-Tibetan Plateau.  相似文献   

5.
The Qinling Mountains, located at the junction of warm temperate and subtropical zones, serve as the boundary between north and south China. Exploring the sensitivity of the response of vegetation there to hydrothermal dynamics elucidates the dynamics and mechanisms of the main vegetation types in the context of changes in temperature and moisture. Importance should be attached to changes in vegetation in different climate zones. To reveal the sensitivity and areal differentiation of vegetation responses to hydrothermal dynamics, the spatio-temporal variation characteristics of the normalized vegetation index(NDVI) and the standardized precipitation evapotranspiration index(SPEI) on the northern and southern slopes of the Qinling Mountains from 2000 to 2018 are explored using the meteorological data of 32 meteorological stations and the MODIS NDVI datasets. The results show that: 1) The overall vegetation coverage of the Qinling Mountains improved significantly from 2000 to 2018. The NDVI rise rate and area ratio on the southern slope were higher than those on the northern slope, and the vegetation on the southern slope improved more than that on the northern slope. The Qinling Mountains showed an insignificant humidification trend. The humidification rate and humidification area of the northern slope were greater than those on the southern slope. 2) Vegetation on the northern slope of the Qinling Mountains was more sensitive to hydrothermal dynamics than that on the southern slope. Vegetation was most sensitive to hydrothermal dynamics from March to June on the northern slope, and from March to May(spring) on the southern slope. The vegetation on the northern and southern slopes was mainly affected by hydrothermal dynamics on a scale of 3–7 months, responding weakly to hydrothermal dynamics on a scale of 11–12 months. 3) Some 90.34% of NDVI and SPEI was positively correlated in the Qinling Mountains. Spring humidification in most parts of the study area promoted the growth of vegetation all the year round. The sensitivity of vegetation responses to hydrothermal dynamics with increasing altitude increased first and then decreased. Elevations of 800 to 1200 m were the most sensitive range for vegetation response to hydrothermal dynamics. The sensitivity of the vegetation response at elevations of 1200–3000 m decreased with increasing altitude. As regards to vegetation type, grass was most sensitive to hydrothermal dynamics on both the northern and southern slopes of the Qinling Mountains; but most other vegetation types on the northern slope were more sensitive to hydrothermal dynamics than those on the southern slope.  相似文献   

6.
Though many studies have focused on the causes of shifts in trend of temperature, whether the response of vegetation growth to temperature has changed is still not very clear. In this study, we analyzed the spatial features of the trend changes of temperature during the growing season and the response of vegetation growth in China based on observed climatic data and the normalized difference vegetation index(NDVI) from 1984 to 2011. An obvious warming to cooling shift during growing season from the period 1984–1997 to the period 1998–2011 was identified in the northern and northeastern regions of China, whereas a totally converse shift was observed in the southern and western regions, suggesting large spatial heterogeneity of changes of the trend of growing season temperature throughout China. China as a whole, a significant positive relationship between vegetation growth and temperature during 1984 to 1997 has been greatly weakened during 1998–2011. This change of response of vegetation growth to temperature has also been confirmed by Granger causality test. On regional scales, obvious shifts in relationship between vegetation growth and temperature were identified in temperate desert region and rainforest region. Furthermore, by comprehensively analyzing of the relationship between NDVI and climate variables, an overall reduction of impacts of climate factors on vegetation growth was identified over China during recent years, indicating enhanced influences from human associated activities.  相似文献   

7.
SHI Jun  TANG Xu  CUI Linli 《地理学报》2008,18(3):283-294
Based on the daily maximum temperature data covering the period 1961–2005, temporal and spatial characteristics and their changing in mean annual and monthly high temperature days (HTDs) and the mean daily maximum temperature (MDMT) during annual and monthly HTDs in East China were studied. The results show that the mean annual HTDs were 15.1 and the MDMT during annual HTDs was 36.3℃ in the past 45 years. Both the mean annual HTDs and the MDMT during annual HTDs were negative anomaly in the1980s and positive anomaly in the other periods of time, oscillating with a cycle of about 12–15 years. The mean annual HTDs were more in the southern part, but less in the northern part of East China. The MDMT during annual HTDs was higher in Zhejiang, Anhui and Jiangxi provinces in the central and western parts of East China. The high temperature process (HTP) was more in the southwestern part, but less in northeastern part of East China. Both the HTDs and the numbers of HTP were at most in July, and the MDMT during monthly HTDs was also the highest in July. In the first 5 years of the 21st century, the mean annual HTDs and the MDMT during annual HTDs increased at most of the stations, both the mean monthly HTDs and the MDMT during monthly HTDs were positive anomalies from April to October, the number of each type of HTP generally was at most and the MDMT in each type of HTP was also the highest.  相似文献   

8.
Based on the daily maximum temperature data covering the period 1961-2005, temporal and spatial characteristics and their changing in mean annual and monthly high temperature days(HTDs)and the mean daily maximum temperature(MDMT)during annual and monthly HTDs in East China were studied.The results show that the mean annual HTDs were 15.1 and the MDMT during annual HTDs was 36.3℃in the past 45 years.Both the mean annual HTDs and the MDMT during annual HTDs were negative anomaly in the1980s and positive anomaly in the other periods of time,oscillating with a cycle of about 12-15 years.The mean annual HTDs were more in the southern part,but less in the northern part of East China.The MDMT during annual HTDs was higher in Zhejiang,Anhui and Jiangxi provinces in the central and western parts of East China.The high temperature process(HTP) was more in the southwestern part,but less in northeastern part of East China.Both the HTDs and the numbers of HTP were at most in July,and the MDMT during monthly HTDs was also the highest in July.In the first 5 years of the 21st century,the mean annual HTDs and the MDMT during annual HTDs increased at most of the stations,both the mean monthly HTDs and the MDMT during monthly HTDs were positive anomalies from April to October,the number of each type of HTP generally was at most and the MDMT in each type of HTP was also the highest.  相似文献   

9.
30年来呼伦贝尔地区草地植被对气候变化的响应(英文)   总被引:8,自引:3,他引:5  
Global warming has led to significant vegetation changes especially in the past 20 years. Hulun Buir Grassland in Inner Mongolia, one of the world’s three prairies, is undergoing a process of prominent warming and drying. It is essential to investigate the effects of climatic change (temperature and precipitation) on vegetation dynamics for a better understanding of climatic change. NDVI (Normalized Difference Vegetation Index), reflecting characteristics of plant growth, vegetation coverage and biomass, is used as an indicator to monitor vegetation changes. GIMMS NDVI from 1981 to 2006 and MODIS NDVI from 2000 to 2009 were adopted and integrated in this study to extract the time series characteristics of vegetation changes in Hulun Buir Grassland. The responses of vegetation coverage to climatic change on the yearly, seasonal and monthly scales were analyzed combined with temperature and precipitation data of seven meteorological sites. In the past 30 years, vegetation coverage was more correlated with climatic factors, and the correlations were dependent on the time scales. On an inter-annual scale, vegetation change was better correlated with precipitation, suggesting that rainfall was the main factor for driving vegetation changes. On a seasonal-interannual scale, correlations between vegetation coverage change and climatic factors showed that the sensitivity of vegetation growth to the aqueous and thermal condition changes was different in different seasons. The sensitivity of vegetation growth to temperature in summers was higher than in the other seasons, while its sensitivity to rainfall in both summers and autumns was higher, especially in summers. On a monthly-interannual scale, correlations between vegetation coverage change and climatic factors during growth seasons showed that the response of vegetation changes to temperature in both April and May was stronger. This indicates that the temperature effect occurs in the early stage of vegetation growth. Correlations between vegetation growth and precipitation of the month before the current month, were better from May to August, showing a hysteresis response of vegetation growth to rainfall. Grasses get green and begin to grow in April, and the impacts of temperature on grass growth are obvious. The increase of NDVI in April may be due to climatic warming that leads to an advanced growth season. In summary, relationships between monthly-interannual variations of vegetation coverage and climatic factors represent the temporal rhythm controls of temperature and precipitation on grass growth largely.  相似文献   

10.
In Northeast Thailand, the climate change has resulted in erratic rainfall and tem- perature patterns. The region has experienced both periods of drought and seasonal floods with the increasing severity. This study investigated the seasonal variation of vegetation greenness based on the Normalized Difference Vegetation Index (NDVI) in major land cover types in the region. An assessment of the relationship between climate patterns and vegeta- tion conditions observed from NDVI was made. NDVI data were collected from year 2001 to 2009 using multi-temporal Terra MODIS Vegetation Indices Product (MOD13Q1). NDVI pro- files were developed to measure vegetation dynamics and variation according to land cover types. Meteorological information, i.e. rainfall and temperature, for a 30 year time span from 1980 to 2009 was analyzed for their patterns. Furthermore, the data taken from the period of 2001-2009, were digitally encoded into GIS database and the spatial patterns of monthly rainfall and temperature maps were generated based on kriging technique. The results showed a decreasing trend in NDVI values for both deciduous and evergreen forests. The highest productivity and biomass were observed in dry evergreen forests and the lowest in paddy fields. Temperature was found to be increasing slightly from 1980 to 2009 while no significant trends in rainfall amounts were observed. In dry evergreen forest, NDVI was not correlated with rainfall but was significant negatively correlated with temperature. These re- sults indicated that the overall productivity in dry evergreen forest was affected by increasing temperatures. A vegetation greenness model was developed from correlations between NDVI and meteorological data using linear regression. The model could be used to observe the change in vegetation greenness and dynamics affected by temperature and rainfall.  相似文献   

11.
The temporal and spatial changes of NDVI on the Tibetan Plateau, as well as the relationship between NDVI and precipitation, were discussed in this paper, by using 8-km resolution multi-temporal NOAA AVHRR-NDVI data from 1982 to 1999. Monthly maximum NDVI and monthly rainfall were used to analyze the seasonal changes, and annual maximum NDVI, annual effective precipitation and growing season precipitation (from April to August) were used to discuss the interannual changes. The dynamic change of NDVI and the corre-lation coefficients between NDVI and rainfall were computed for each pixel. The results are as follows: (1) The NDVI reached the peak in growing season (from July to September) on the Tibetan Plateau. In the northern and western parts of the plateau, the growing season was very short (about two or three months); but in the southern, vegetation grew almost all the year round. The correlation of monthly maximum NDVI and monthly rainfall varied in different areas. It was weak in the western, northern and southern parts, but strong in the central and eastern parts. (2) The spatial distribution of NDVI interannual dynamic change was different too. The increase areas were mainly distributed in southern Tibet montane shrub-steppe zone, western part of western Sichuan-eastern Tibet montane coniferous forest zone, western part of northern slopes of Kunlun montane desert zone and southeastern part of southern slopes of Himalaya montane evergreen broad-leaved forest zone; the decrease areas were mainly distributed in the Qaidam montane desert zone, the western and northern parts of eastern Qinghai-Qilian montane steppe zone, southern Qinghai high cold meadow steppe zone and Ngari montane desert-steppe and desert zone. The spatial distribution of correlation coeffi-cient between annual effective rainfall and annual maximum NDVI was similar to the growing season rainfall and annual maximum NDVI, and there was good relationship between NDVI and rainfall in the meadow and grassland with medium vegetation cover, and the effect of rainfall on vegetation was small in the forest and desert area.  相似文献   

12.
为了研究新疆不同类型植被对气候变化的响应,以地带性划分的植被类型作为研究对象,1998-2012年为时间尺度,利用GIS的空间分析方法结合数学统计方法,分析了新疆各地带植被覆盖变化的时空分布特征;并采用"多元回归+残差插值"的方法,模拟了气温和降水量的空间分布;利用SPOT VGT/NDVI数据以及气候数据(气温和降水量数据),分析了5个不同地带植被的动态变化、年际变化和生长季内各月变化及其对气候变化的响应。结果表明:(1)新疆各地带植被覆盖度存在着显著差异,其中,温带北部草原地带高植被区和浓密植被区的范围较广,植被覆盖度较高,而高寒荒漠地带的极低植被区占该地带面积的一半以上,且植被覆盖度最低。(2)新疆各地带植被覆盖在近15 a间呈波动增加的趋势,5个地带的植被覆盖均有所改善,其中,高寒荒漠地带和暖温带半灌木、灌木地带的植被覆盖改善较为明显,其余3个地带均有少部分地区出现轻微改善现象。(3)温带半灌木、矮乔木荒漠地带,暖温带半灌木、灌木荒漠地带和温带半灌木、灌木荒漠地带4~10月的平均气温呈上升趋势,而温带北部草原地带、高寒荒漠地带对应的平均气温则出现下降趋势。5个地带的降水量在该时段内均表现为下降趋势。(4)基于年际尺度,新疆各地带植被NDVI与气温、降水量的相关性均不显著;基于月尺度,各地带植被NDVI受降水量的影响比气温大。同时,仅有暖温带半灌木、灌木荒漠地带植被NDVI与气温存在1个月的滞后性,其余4个地带对气温和降水均不存在滞后性。  相似文献   

13.
1982~2013年青藏高原高寒草地覆盖变化及与气候之间的关系   总被引:7,自引:2,他引:5  
陆晴  吴绍洪  赵东升 《地理科学》2017,37(2):292-300
利用GIMMS NDVI数据和地面气象站台观测数据,对青藏高原1982~2013年高寒草地覆盖时空变化及其对气象因素的响应进行研究,结果表明:青藏高原高寒草地生长季NDVI表现为从东南到西北逐渐减少的趋势,近32 a来,整个高原草地生长季NDVI呈上升趋势,增加速率为0.000 3/a (p<0.05);高寒草地生长季NDVI年际变化具有空间异质性,整体为增加趋势,呈增加趋势的面积约占研究区域面积的75.3%,其中显著增加的占26.0% (p<0.05),类型主要为分布在青藏高原东北部地区的高寒草甸;比例为4.7%,草地类型主要为高寒草原,主要分布在高原西部地区;基于生态地理分区的分析显示,青藏高原草地与降水、温度的相关关系具有明显的空间差异,高寒草地生长季NDVI均值与降水呈显著正相关,对降水的滞后效应显著;高原东北部温度较高,热量条件较好,降水为高寒草地生长季NDVI变化的主导因子;东中部地区降水充沛,温度则为高寒草地生长的制约因子;南部地区降水和温度都较适宜,均与高寒草地生长季NDVI相关性显著(p< 0.05),共同作用于草地的生长;中部和西部地区,气候因子与高寒草地生长季NDVI关系均不显著。  相似文献   

14.
中国草原区植被变化及其对气候变化的响应   总被引:4,自引:4,他引:0  
利用1982~2006年GIMMS NDVI和气象数据,探究中国草原区植被变化及对气候的响应。结果表明,近25 a中国草原区植被覆盖总体呈上升趋势,但季节变化空间差异明显。春季温度对温带典型草原、高寒草甸草原和高寒典型草原植被生长有重要影响,而夏季和秋季温度同样对高寒草甸草原影响显著;夏季降水增多能明显促进夏季温带荒漠草原植被生长。除8月份以外,温带草原5~9月NDVI均与前一个月降水显著正相关;在生长季内,高寒草原NDVI与同期温度显著正相关,但8月份除外。此外高寒草原植被在生长最旺盛时期对降水变化存在1~3个月滞后期。  相似文献   

15.
青藏高原植被NDVI对气候因子响应的格兰杰效应分析   总被引:3,自引:1,他引:3  
多变的气候和复杂的地理环境使得青藏高原植被对气候变化响应敏感,因此分析高原植被与气候因子之间的动态关系对气候变化研究和生态系统管理具有重要意义。论文基于1982—2012年青藏高原气象数据(气温、降水)以及GIMMS NDVI3g遥感数据,在像素级别上运用格兰杰因果关系检验方法,在月尺度和季节尺度上分析了高原植被NDVI(主要是草原)与平均气温、降水量之间的响应情况及因果关系。研究表明:① 月尺度上NDVI与平均气温之间、NDVI与降水量之间的时序平稳性比例高于季节尺度,月尺度下达到平稳性的植被区域分别占99.13%和98.68%,季节尺度下分别占64.01%和71.97%;② 月尺度下高原平均气温和降水量对NDVI影响的滞后期都集中在第12~13个月,荒漠草原、典型草原和草甸3种植被类型的滞后期一致,季节尺度下平均气温和降水量对NDVI影响的滞后期主要分布在第3~4和第6个季度,3种植被类型的滞后期差异性较大;③ 月尺度下,青藏高原约98.95%的植被覆被区的平均气温是引起NDVI变化的格兰杰原因,反之,大部分地区(约89.05%,除高原东南区域)内NDVI也是引起平均气温变化的格兰杰原因;季节尺度下,青藏高原中部以外植被区域(约92.03%)内的平均气温是引起NDVI变化的格兰杰原因,而在东部和西部部分地区(约50.55%)中NDVI也是引起平均气温变化的格兰杰原因;④ 月尺度下,高原东北和西北地区(约72.05%)内的降水量是引起NDVI变化的格兰杰原因,大部分地区(约94.86%,除东南部少量区域)中NDVI是引起降水量变化的格兰杰原因;季节尺度下,高原东南部(约61.43%)地区内的降水量是引起NDVI变化的格兰杰原因,高原中东部地区(约48.98%)中NDVI是引起降水量变化的格兰杰原因。总之,高原植被NDVI与气温、降水的相互作用显著,彼此均可构成格兰杰因果效应,但总体上气候因子的影响程度大于植被的反馈作用,月尺度的效应区域大于季节尺度的效应区域。  相似文献   

16.
应用遥感数据研究中国植被生态系统与气候的关系   总被引:48,自引:2,他引:48  
应用1982-1994年NOAA/AVHRR的归一化植被指数(NDVI)资料和587个气象台站的数据对我国不同类型植被生态系统和气候的关系进行研究,首先将我国的植被类型划分为21类,在此基础上分别研究了不同时间尺度下我国不同区域,不同植被类型和气候的关系。结果表明:在多年平均状态下,植被生态系统NDVI水平主要受水分条件的影响;年内变化上,温度对植被生态系统季相变化化起着比降水略大的作用,年降水量造成了植被季相响应的差异,在年际变化上,分别研究了4个季节和整个生长期尺度上的关系,一般情形为温度和降水对植被的年际波动起着大致相反的作用,不同植被类型在不同的生长时期(季节)对气候的变化响应方式也不同,发现在植被的生长期,我国南方和北方的植被生态系统对温度和降水的响应方式相反;同时存在2个植被-气候敏感区,分别为我国北方的典型草原到森林的过渡区和云南中部部分区域。  相似文献   

17.
利用1982-2000年NOAA/AVHRR卫星的NDVI数据(时间分辨率旬,空间分辨率8 km×8 km),结合同时期的气温和降水资料,基于时滞互相关方法和GIS工具,分析了青藏高原植被覆盖对水、热条件年内变化的时滞响应及其空间特征。结果如下:①除高寒荒漠、森林外,青藏高原植被NDVI与同期旬均温和旬降水相关性均呈高度正相关。其中,中等覆盖度的植被受水、热影响表现更为强烈。②青藏高原植被NDVI对气温和降水有滞后效应,且滞后水平存在空间差异,高原北部(柴达木盆地、昆仑山北冀)和高原南部植被对降水、和温度的响应比较迟缓,而高原中、东部地区植被对温度和降水的响应比较敏感。③不同植被类型对水热条件的响应程度也存在差异,由高到低依次是草甸、草原、灌丛、高寒垫状植被、荒漠,最后是森林。  相似文献   

18.
中国东南部植被NPP的时空格局变化及其与气候的关系研究   总被引:2,自引:0,他引:2  
崔林丽  杜华强  史军  陈昭  郭巍 《地理科学》2016,36(5):787-793
基于2001~2010年MOD17A3年均NPP数据和气象站点气温、降水资料,利用GIS空间分析技术和数理统计方法研究中国东南部植被NPP的时空格局、动态变化及与气候要素的关系。结果表明,中国东南部植被年均NPP总体上呈现从南到北、由东至西逐渐减少的分布,不同植被类型的NPP存在明显差异,以常绿阔叶林最高,落叶针叶林最低。2001~2010年间,植被NPP整体上略有减少。空间上植被NPP在南部地区明显减少,而在北部地区明显增加。植被NPP与降水和气温的相关性均表现出明显的地域差异。  相似文献   

19.
中国东部植被NDVI对气温和降水的时空响应(英文)   总被引:8,自引:4,他引:4  
Temporal and spatial response characteristics of vegetation NDVI to the variation of temperature and precipitation in the whole year,spring,summer and autumn was analyzed from April 1998 to March 2008 based on the SPOT VGT-NDVI data and daily temperature and precipitation data from 205 meteorological stations in eastern China.The results indicate that as a whole,the response of vegetation NDVI to the variation of temperature is more pronounced than that of precipitation in eastern China.Vegetation NDVI maxi...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号