首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
PES制膜体系凝胶时间的研究   总被引:3,自引:1,他引:2  
提出了拉伸逼近法对PES-NMP制膜体系凝胶时间的定量研究。考察了铸膜液条件、凝胶条件对凝胶时间的影响。研究发现,成膜过程中的凝胶时间随膜液高分子浓度的的增加而增加;随膜液中非溶剂含量的增加而减少;随凝胶液中的溶剂含量增加而增大,并且这种增长在一定范围内出现突跃。这种突跃表明膜液的凝胶过程不仅受传质交换速率控制还不可能受其他因素影响。与延迟分相时间的比较实验揭示了:无论对延迟分相体系或是对瞬间分相体系,成膜过程中的凝胶时间远大于延迟分相时间。说明膜结构不仅取决于分相动力学,也取决于凝胶动力学。  相似文献   

2.
通过测定铸膜液黏度、凝胶速率以及绘制浊点相图来研究正硅酸乙酯(TEOS)对聚偏氟乙烯(PVDF)成膜过程的影响.实验发现,随着铸膜液中TEOS添加量的增加,铸膜液的黏度持续降低;三元相图显示更少的凝胶剂就能达到铸膜液的分相点,两者的综合作用使得PVDF膜的凝胶速率加快.TEOS对成膜过程的影响使得膜结构有一定的改变:铸膜液不含添加剂时形成的是海绵状致密膜,随着TEOS含量的增加孔的数量增多,孔径变大;含有添加剂时形成的是指状孔结构,随着TEOS含量增加指状孔生长更充分.  相似文献   

3.
PVDF体系浸没沉淀相转化的两步成膜机理的探讨   总被引:2,自引:0,他引:2  
研究了不同聚合物浓度铸膜液体系DMAc/H2O/PVDF的热力学性质、沉淀速度以及膜的结构,利用两步成膜机理探讨了PVDF体系的成膜机理.结果显示,皮层分相主要由体系热力学性质控制,当PVDF浓度逐渐增加时,PVDF结晶化作用越来越重要,皮层分相由瞬时液液分相逐渐转化为延时液固分相,膜上表面由多孔结构变成致密结构.亚层的分相由动力学扩散过程控制,分相时间由动力学扩散和体系热力学性质共同控制,随PVDF浓度的增加,结晶化作用增强,DMAc和H2O相互扩散速度减小,分相时间延长,使得亚层由瞬时液液分相转变为延时液液分相,膜亚层指状大孔结构减少海绵状孔结构增多,膜的结晶度提高.  相似文献   

4.
聚合物共混对聚偏氟乙烯超滤膜结构与性能的影响   总被引:1,自引:0,他引:1  
根据聚合物共混焓变、绝对黏度及凝胶点值,考察了4种聚合物(聚乙烯醇(PVA)、聚乙二醇(PEG)、聚乙烯吡咯烷酮(PVP)、聚甲基丙烯酸甲酯(PMMA))与聚偏氟乙烯(PVDF)/N,N-二甲基乙酰胺(DMAc)铸膜液体系的共混相容性。利用凝胶相转化动力学及原子力显微镜(AFM)、扫描电镜(SEM)、亲水接触角和泡点压力等检测手段,分析了水凝胶浴中4种添加剂对PVDF超滤膜成膜过程及膜结构与性能的影响。结果显示,4种添加剂与PVDF/DMAc的共混相容性顺序为PEG>PVP>PVA>PMMA。共混体系均以液液分相为主;其中PEG、PVP共混PVDF体系以瞬时分相为主,膜内部有大孔,表皮层及支撑层较为致密。PMMA和PVA共混PVDF体系有延时分相和液固分相行为,膜表面多孔、内部有大孔且亚层疏松。共混优化了PVDF超滤膜结构。PVA能有效提高膜亲水性能。  相似文献   

5.
根据铸膜液粘度、凝胶点温度及相转化动力学行为,结合SEM和AFM技术及泡点压力、亲水接触角等检测手段,考察了PVDF/DMAc体系中,共混添加PVA、PMMA、PVP及其组合对相转化进程及膜结构参数和性能等的影响。结果显示,PVA和PM-MA共混PVDF铸膜液的粘度和凝胶点升高,导致延迟分相并减缓了相分离及固化速度,膜内部大孔和海绵结构相互贯穿,膜亲水性较好。PVP和PMMA共混PVDF体系发生瞬时分相,液-液分相与液-固分相同时并存,膜内部大孔通透,支撑层致密,分离性能优良。PMMA能有效改善三元共混膜表面的粗糙行为。  相似文献   

6.
采用凝胶相转化法,以聚偏二氟乙烯(PVDF)/聚甲基丙烯酸-2-羟基乙酯(PHE-MA)共混合金为膜材料,N,N-二甲基乙酰胺(DMAc)为溶剂,阳离子季铵型表面活性剂(TM)为添加剂制备微滤膜.考察了添加剂浓度对铸膜液相容性、铸膜液黏度、铸膜液凝胶速度、膜结构和性能的影响.对PVDF/PHEMA/DMAc铸膜液体系中TM添加剂的作用规律进行了研究.实验发现:TM添加质量分数小于5.0%时,铸膜液中组分的相容性得到很大改善,制备出的微滤膜表面孔径均一、孔密度高.随着TM添加浓度的增大,铸膜液黏度先减小后增大,凝胶速度逐渐增大,膜的纯水通量先增大后减小,截留率则始终上升.  相似文献   

7.
以杂萘联苯聚醚砜酮(PPESK)/NMP为铸膜液体系,进行成膜过程凝胶动力学研究.发现凝胶动力学曲线(X2~t)不是由单一直线组成的,而是由三段对应着不同膜结构的直线组成.考察了不同添加剂对PPESK-NMP体系凝胶速度的影响.结果表明,亲水性强的添加剂,可提高铸膜液体系的亲水性,从而加快溶剂、非溶剂的传质速率,凝胶速度加快,膜的水通量增加.使铸膜液黏度增加的添加剂,使非溶剂扩散系数降低,凝胶速度减慢,膜的水通量减少.丙二酸添加剂增大了铸膜液的亲水性,使铸膜液的凝胶速度增大.吐温添加剂既增加了铸膜液的亲水性又增加了铸膜液的黏度,凝胶速度也先变小后变大.PEG添加剂虽然增大了铸膜液体系的亲水性,但同时也提高了铸膜液的黏度,凝胶速度的变化不大.  相似文献   

8.
铸膜液的溶解温度对浸没沉淀相转化法制备聚偏氟乙烯(PVDF)微孔膜结构具有显著影响。所成膜断面底层为胞腔状结构,胞腔直径的大小随铸膜液溶解温度的升高而增大,且胞腔表面为三维网络状结构。结合三元相图和膜的微观结构分析认为,该制膜体系成膜过程中首先发生双节液-液分相,贫聚合物相成核并粗化形成胞腔,继而发生旋节液-液微相分离。溶解温度对成膜结构的影响与PVDF分子和溶剂分子间的溶剂化作用、成膜过程中高分子线团的构象变化有关。  相似文献   

9.
不同甘油质量分数的添加剂对浸没沉淀相转化法制备聚偏氟乙烯(PVDF)微孔膜的结构及性能具有显著影响。实验结果表明,铸膜液中甘油质量分数越高,在相同的制膜条件下,铸膜液越容易发生凝胶分相,所成膜表面越发致密,孔密度降低,断面指状大孔的长度和胞腔状结构的相互贯通性增加。另外膜的空隙率均随着铸膜液中甘油质量分数的增加而增加,...  相似文献   

10.
考察天然纤维粉体/聚偏氟乙烯(PVDF)/N,N-二甲基甲酰胺(DMAc)铸膜液热力学性质,采用浸没沉淀相转化法制备了天然纤维粉体/PVDF共混膜,表征了共混膜的结构和性质。结果表明,按照棉花粉体、羊毛粉体、无粉体的顺序,制膜体系越来越容易发生液固分相;并且棉花粉体/PVDF共混膜、羊毛粉体/PVDF共混膜、PVDF膜的孔隙率和水通量依次降低,结晶度依次增加,但膜形态一致,均为致密皮层和多孔亚层。共混膜性质的差异主要是由于纤维粉体亲水性的不同,添加亲水性较好的羊毛粉体的铸膜液成膜速度慢,而添加亲水性较低的棉花粉体的铸膜液成膜速度较快。  相似文献   

11.
铸膜液熟化时间对制备PVDF微孔膜结构与结晶的影响   总被引:1,自引:0,他引:1  
铸膜液的熟化时间对膜内部微观孔结构具有较大影响。当天配制的铸膜液制膜过程中首先发生瞬时液-液分相,稀聚合物相成核,所成膜内部形成有指状大孔的胞腔状结构。经一定熟化时间的铸膜液,熟化过程中内部首先发生固-液微相分离。制膜过程中,铸膜液内微液相区发生液-液相分离,微晶固相区凝胶固化,形成网络状结构。当天配制的铸膜液制得的PVDF膜,主要为β型结晶结构。随着铸膜液熟化时间延长,所制得膜β型结晶所占比例减少,α型结晶所占比例增多。  相似文献   

12.
对聚偏氟乙烯(PVDF)/碳酸二苯酯(DPC)体系,采用热致相分离(TIPS)法制备了PVDF微孔膜.通过稀释剂的溶度参数对体系的相容性进行分析,热力学相图和不同PVDF质量浓度下制备的微孔膜断面照片均证明该体系具有较宽的液-液相分离区.PVDF/DPC体系偏晶点对应的PVDF浓度约为质量分数56%,低于此浓度体系降温后先发生液-液相分离,随着PVDF浓度的增大,微孔膜断面结构由双连续结构转变为蜂窝状结构,且膜孔孔径减小,高于此浓度体系降温后只发生固-液相分离,微孔膜断面呈块状紧密堆积结构.较快的冷却速率有利于低PVDF浓度时较小孔径膜和高PVDF浓度时较小球粒尺寸膜的生成.  相似文献   

13.
李昕  陈翠仙  李继定 《功能材料》2008,39(3):410-413
以酚酞基聚芳醚砜/聚乙二醇/N,N-二甲基乙酰胺为铸膜液体系,考察了聚乙二醇对非对称膜成膜过程凝胶动力学的影响.结果表明,成膜过程中凝胶动力学的研究结果得到与Strathman等人不同的结果,凝胶前锋位移的平方与时间不是简单的线性关系,凝胶动力学过程不能简单的用Fick扩散定律来描述.提出将凝胶过程与非对称膜的结构相对应分为4个连续的凝胶过程,凝胶速度曲线由4段具有不同速度常数的线段组成,每一段的速度常数大小和膜横截面上的不同结构相对应.在凝胶过程中,凝胶速度常数最大的是皮层.聚乙二醇浓度增加,在热力学上加速了铸膜液的相分离,铸膜液黏度的自然对数值线性增加,铸膜液黏度对凝胶速度的影响比热力学因素的影响要大.  相似文献   

14.
以新型耐高温工程塑料——含酚酞侧基的聚芳醚砜(PES-C)为膜材料,N,N-二甲基乙酰胺(DMAc)为溶剂,加入一种易挥发添加剂:乙醚.通过改变铸膜液中添加剂乙醚的含量,采用相转化法在平板刮膜机上制备了一系列超滤膜,考察了添加剂乙醚含量对铸膜液黏度、凝胶速度、膜性能和结构的影响,研究了PES-C/DMAc体系中添加剂乙醚作用的规律.结果发现,乙醚的加入,会使溶剂对聚合物溶解能力降低.乙醚含量的增加,使铸膜液黏度增加,凝胶速度下降,水通量降低,截留率上升.所制备的超滤膜的结构为指状孔结构,但是随着乙醚用量的增加,皮层增厚,过渡层中指状孔减少.  相似文献   

15.
研究了无机盐添加剂LiCl对超临界CO2诱导相转化所制得的微孔PVDF膜的形貌和晶体结构的影响.对不含盐的体系,PVDF膜显示出液一液分相和结晶作用两种过程的形貌特性,即由互相连接的PVDF粒状微晶包围的蜂窝状孔结构.而对含盐体系,PVDF膜内部形成了大孔结构.随着LiCl加入量的增加,大孔尺寸先增大后减小.宽角X-射线衍射分析表明,由不含盐体系所制得的膜中PVDF晶体结构为α型(Ⅱ型),而由含盐体系所制得的膜中PVDF晶体结构则为β型(Ⅰ型).感应耦合等离子体质谱分析表明,约16%~22%的LiCl仍然残留在PVDF膜中.  相似文献   

16.
考察了10种小分子有机溶剂添加剂对PVDF/DMAc制膜体系热力学与膜结构的影响。结果发现,小分子有机溶剂添加剂使铸膜液体系的凝胶值降低,即热力学稳定性降低。当铸膜液中添加了EtOH、i-PrOH、PgOH、PtOH时,膜中指状大孔结构充分发展,并且膜的孔隙率高、气通量大。而DtOH、BtOH、OtOH、PrA、AC和MeAt添加剂则使得大孔的结构减少,并且孔隙率低、气通量小。最后从热力学性质与扩散两个角度进行了成膜机理的探讨,当使用EtOH、i-PrOH、PgOH、PtOH添加剂时,铸膜液中由于PVDF超分子聚集态结构的生成使得体系的耐非溶剂性能大大降低,也正是铸膜液中存在的PVDF超分子聚集态结构使得扩散速度加快,分相速度提高,于是大孔结构得到发展。  相似文献   

17.
以聚偏二氟乙烯(PVDF)为原料,邻苯二甲酸二丁酯(DBP)和二苯甲酮(DPK)为稀释剂,通过不同的相分离机理(固-液相分离或液-液相分离)制备了不同结构和性能的多孔膜.建立了聚合物/稀释剂体系的二元相图,同时采用扫描电子显微镜(SEM)、孔隙率和水通量测试、差示扫描量热仪(DSC)和X射线衍射仪(XRD)对多孔膜的结构和性能进行表征.研究结果表明:由PVDF/稀释剂体系制备的多孔膜断面结构主要为表面带有微孔的球粒.PVDF/DPK体系在PVDF含量为20 wt%、0℃水浴冷却的条件下获得了双连续结构的多孔膜,其孔隙率和水通量优于同体系其它多孔膜.PVDF多孔膜的结晶度随稀释剂含量的增大而增大,随冷却介质温度的升高而增大.PVDF多孔膜的晶型为α晶型,该晶型不随聚合物含量和冷却介质温度发生变化.  相似文献   

18.
利用流变仪对聚偏氟乙烯(PVDF)/己内酰胺(CPL)热致相分离法(TIPS)成膜体系铸膜液的流变性能进行研究.考察了剪切频率、温度、PVDF质量分数对PVDF/CPL铸膜液体系的黏度、非牛顿性指数、黏流活化能、溶液黏弹性的影响,利用TIPS法制备PVDF膜,进一步探讨了铸膜液体系的流变性能对刮膜速率、制膜温度等成膜条件的指导作用.实验结果表明:PVDF/CPL铸膜液体系为非牛顿性流体,随着PVDF质量分数的升高,PVDF/CPL铸膜液体系的黏度增加,非牛顿性指数增加,黏流活化能升高,对应膜的结构越致密,水通量降低,截留率升高,膜的拉伸强度增强.PVDF质量分数低的铸膜液体系,制膜时对温度的灵敏度低,刮膜速率对膜的制备影响大,制膜过程需要对刮膜速率精确地控制;PVDF质量分数高的铸膜液体系,对温度的灵敏度高,可以在较宽的刮膜速度范围下制膜.  相似文献   

19.
采用黏度法测定了聚偏氟乙烯/N,N-二甲基乙酰胺/一缩二乙二醇体系的凝胶分相温度,考察了黏度计转子的转速、高分子浓度、溶液的邻近比及熟化时间对溶液凝胶分相温度的影响.结果显示高分子溶液凝胶分相温度与黏度计转子的转速无关,但随着高分子浓度、溶液的邻近比及熟化时间的增加而升高.黏度法来确定PVDF溶液的凝胶分相温度是一种简...  相似文献   

20.
创新性地将核孔膜作为基膜,使用聚偏氟乙烯(PVDF)为膜材料,N,N-二甲基乙酰胺(DMAc)为溶剂,采用非溶剂致相分离法制备了PVDF/PET核孔膜复合疏水/亲水膜,并对复合膜的微观结构、机械性能、亲疏水性、孔隙结构进行深入表征,研究了添加剂含量和核孔膜孔径对膜微观形态和性能的影响.结果表明,提高LiCl添加剂含量使得铸膜液的黏度增大,膜指状孔结构变小且海绵状结构变紧密,PVDF/PET核孔复合膜的平均剥离力从4.48 N下降为1.19 N,孔径从0.132 7μm减少到0.080 4μm,孔隙率从44.65%减少至37.60%;核孔膜孔径增大导致复合膜的机械强度下降.直接接触式膜蒸馏(DCMD)分离性能测试表明,PVDF/PET核孔复合膜通量比相同厚度单层PVDF疏水膜通量提升约30%;可稳定运行超过39 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号