首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
微波辐射乳液聚合制备磁性高分子微球   总被引:1,自引:0,他引:1  
用化学共沉淀法制备了Fe3O4纳米粒子,并用油酸和十二烷基硫酸钠对Fe3O4纳米粒子进行表面修饰,得到了稳定的水分散性纳米Fe3O4磁流体。在Fe3O4磁流体存在下,以苯乙烯和丙烯酰胺为单体,采用微波辐射乳液聚合法制备了Fe3O4/聚(苯乙烯-丙烯酰胺)磁性高分子微球,表征了磁性高分子微球的形态与结构,研究了磁性高分子微球的粒径、热稳定性、磁含量与饱和磁化强度。研究发现,在选定合适的聚合条件下,通过微波辐射乳液聚合法可以制得粒径为70 nm~80 nm、磁含量为18.2%的磁性高分子微球。  相似文献   

2.
采用共沉淀法制备了油酸修饰的Fe3O4纳米粒子,并采用相反转工艺制备了Fe3O4/P(St-BA)复合微球。用透射电镜(TEM)和热失重(TGA)方法表征了Fe3O4纳米粒子、Fe3O4/P(St-BA)复合微球的形貌和Fe3O4含量。TEM显示大部分Fe3O4粒子被包覆在复合微球内部,同时有部分Fe3O4粒子嵌在微球表面。研究表明:Fe3O4/P(St-BA)复合微球具有良好的磁响应性,油酸量为0.4g修饰的Fe3O4粒子在混合单体中分散效果好。粒度测试结果显示转相水体系中聚乙烯醇和十二烷基硫酸钠复配制备的微球粒径较小且分布较窄;转相过程提高转速微球平均粒径变小,粒度分布变窄。  相似文献   

3.
药用壳聚糖磁性复合微球的制备及特性   总被引:1,自引:0,他引:1  
采用化学共沉淀法,以FeCl2·4H2O和FeCl3·6H2O为原料,氨水为沉淀剂制备出磁性Fe3O4纳米粒子;然后采用化学交联法,在分散有纳米Fe,04的壳聚糖乳液中,加入适量的戊二醛交联剂制得包覆有纳米Fe3O4的壳聚糖复合微球载体.该复合磁性微球成球性好,分散均匀,平均粒径达到10βμm左右,具有较好的磁响应性及生物可降解特性.该复合磁性微球可作为载体材料应用于磁性靶向药物的制备.  相似文献   

4.
Fe_3O_4/聚苯乙烯磁性复合微球的制备与应用前景   总被引:1,自引:0,他引:1  
采用改进的乳液聚合法,制备了磁性Fe3O4为核、苯乙烯和丙烯酸的共聚物为壳的磁性高分子复合微球。在透射电镜下观察磁性微球的粒径在130 nm左右;并用FT-IR、XPS和热失重方法表征了复合微球的组成成分、羧基(-COOH)的含量及所含Fe3O4的百分量。结果表明,微球的粒径分布均匀,大小可控,稳定性好,具有一定的抗溶剂性能,可长时间存放,是纳米磁性高分子聚合物网络的雏形。  相似文献   

5.
Fe3O4/PSt/TiO2多层包覆电磁响应微球的制备   总被引:7,自引:0,他引:7  
首先采用分散聚合法将自制的Fe3O4磁流体和苯乙烯反应合成有磁核的Fe3O4/PSt磁性聚合物微球,然后,用非均匀成核水解反应在Fe3O4/PSt微球外包覆无定形二氧化钛,获得Fe3O4/PSt/TiO2复合微粒。用红外光谱、扫描电镜和热分析对粒子的形貌和结构进行了表征。并测试了微粒的介电性能和磁性,结果表明,所制得复合微粒有良好的电、磁响应性。  相似文献   

6.
介绍了一种新的PLLA/Fe3O4磁性复合微球的制备方法——表面引发开环聚合法,先利用硅烷偶联剂Z-6040对Fe3O4进行改性,在其表面引入羟基,再通过羟基引发丙交酯在磁粒子表面开环聚合制备PLLA/Fe3O4磁性复合微球。探讨了复合微球的形成机理,对磁粒子改性效果和微球形貌、粒径、结构、磁含量及磁性能等进行了表征,并详细研究了磁性复合微球性能的影响因素。  相似文献   

7.
通过选用含有乙烯基的有机硅烷偶联剂对自制的纳米Fe3O4进行表面修饰后,采用悬浮聚合法成功制备了单分散磁性高分子复合微球,并重点研究了分散剂浓度、搅拌速度、磁含量等因素对制备的磁性高分子复合微球的影响.结果表明,合适的分散剂浓度和搅拌速度可以获得球径分布良好的磁性高分子复合微球,微球的磁感应强度可以通过改变Fe3O4磁性粒子的含量进行调节.  相似文献   

8.
氧化硅包裹四氧化三铁微球的制备及表征   总被引:1,自引:0,他引:1  
在室温下,采用H2O2氧化Fe(OH)2悬浮液的方法制备得到了粒径23nm左右的磁性纳米粒子,经X射线衍射检测制备得到的是Fe3O4磁性纳米粒子,粒子的饱和磁化强度为59.05emu/g。先用硅烷偶联剂KH560修饰Fe3O4,提高粒子在乙醇溶液中的单分散性,在此基础上采用溶胶凝胶法通过TEOS水解制备得到分散性佳、尺寸均匀、粒径为25nm左右核壳结构的氧化硅包覆Fe3O4纳米粒子的磁微球。  相似文献   

9.
用化学共沉淀法合成了Fe3O4纳米微粒,并用双层表面活性剂对其进行表面修饰,得到了以水和乙醇为分散介质的磁流体。在磁流体的存在下,用改进的乳液聚合方法合成了Fe3O4/聚苯乙烯磁性微球。X射线衍射研究表明,Fe3O4纳米微粒的平均粒径约为10 nm;在透射电镜下观察磁性微球的粒径在140 nm左右;并用红外光谱和热失重方法表征了复合微球的化学成分及其所含Fe3O4的百分数。阐述了双层表面活性剂改性的机理,并对聚合过程中单体、磁流体及引发剂的用量的影响进行了讨论。  相似文献   

10.
曾宪伟  赵东林 《功能材料》2004,35(Z1):605-608
用水解沉淀法制备纳米Fe3O4,然后在其溶液中原位合成聚苯胺,得到纳米Fe3O4/聚苯胺复合粒子.通过XRD、TEM、JDM等测试对纳米复合粒子的形态、结构及磁性能进行了研究.实验制备的纳米Fe3O4粒子粒径为30nm左右,在其表面沉积聚苯胺后,复合粒子的粒径达到了50nm左右.与纳米Fe3O4粒子相比,纳米Fe3O4/聚苯胺复合粒子的XRD峰形变得更为明锐.纳米复合粒子的磁性能表现出软磁性,与纳米Fe3O4粒子相比,矫顽力减小为0,这可以大大减小材料的磁滞损耗和退磁难度,性能得到改善.  相似文献   

11.
采用化学共沉淀法制备了Fe3O4纳米颗粒,以PEG-4000为表面活性剂进行表面修饰,制备了分散性良好的纳米Fe3O4磁流体.磁流体存在时,采用分散聚合法,以苯乙烯为单体制备了磁性高分子微球.TEM研究表明,Fe3O4纳米颗粒的平均粒径约为10nm,分散聚合所制备的磁性聚苯乙烯微球的平均粒径约为80nm;VSM研究表明,合成的Fe3O4纳米颗粒及磁性聚苯乙烯微球具有超顺磁性;FT-IR研究表明,Fe3O4纳米颗粒很好地包覆于聚苯乙烯中;XRD结果表明,分散聚合前后,Fe3O4纳米颗粒的晶体结构没有发生变化.  相似文献   

12.
采用新颖的油-水界面法合成了油溶性Fe3O4纳米粒子,同时运用改进的微乳液聚合法分别对Fe3O4纳米粒子和苯乙烯(St)进行乳化,形成甲基丙烯酸甲酯(MMA)修饰的聚苯乙烯磁性纳米复合微球,通过红外光谱(FF-IR)、透射电镜(TEM)、X射线衍射(XRD)、振动样品磁强计(VSM)进行表征,探讨st与MMA质量比、乳化剂浓度和Fe3O4含量对所形成的复合微求性能的影响,最后,通过抗原抗体的结合反应的吸光度变化测试,表明小鼠抗人肌红蛋白抗体(MYO)可成功连接在复合微球表面,从而为实现其体外诊断应用打下基础。  相似文献   

13.
磁性羧甲基化壳聚糖纳米粒子的制备与表征   总被引:1,自引:1,他引:0  
以化学共沉淀法制备了Fe3O4纳米粒子,壳聚糖经羧甲基化改性后接枝在Fe3O4颗粒表面,得到了磁性羧甲基化壳聚糖(Fe3O4/CMC)纳米粒子.利用透射电镜(TEM)、X射线衍射(XRD)、傅立叶红外光谱(FT-IR)及磁性测试对产物进行了表征.TEM表明Fe3O4纳米粒子被CMC包覆,粒径约10 nm;XRD分析表明复合纳米粒子中磁性物质为Fe3O4;FT-IR表明壳聚糖发生羧甲基反应以及在Fe3O4表面的接枝反应.Fe3O4/CMC纳米粒子具有超顺磁性,比饱和磁化强度25.73 emu/g,有良好的磁稳定性.  相似文献   

14.
白蛋白包覆纳米Fe3O4磁性粒子的制备与表征   总被引:3,自引:0,他引:3  
目的:制备用于肿瘤靶向治疗的纳米级Fe3O4磁性粒子。方法:采用液相共沉淀法制备纳米Fe3O4颗粒,通过高温固化法使得白蛋白固化包覆磁性Fe3O4磁性粒子。结果:X-Ray衍射分析表明制得的纳米Fe3O4为反尖晶石结构,晶粒平均粒径为17.9nm;白蛋白包覆的磁性纳米粒子的平均粒径为341nm。结论:纳米Fe3O4及其白蛋白包覆的磁性粒孚可用作药物的载体,适用于肿瘤靶向治疗的进一步研究。  相似文献   

15.
采用化学共沉法制备Fe3O4磁性微粒,用水溶性较好的羧化壳聚糖及用于治疗基底细胞瘤、光化性骨化病的氨基酮戊酸对Fe3O4磁性微粒进行两层包覆,最终形成载药Fe3O4/羧化壳聚糖磁性液体。采用XRD、TEM和FT-IR对载药纳米Fe3O4/羧化壳聚糖磁性液体复合微球的晶型结构、官能团组成及微粒尺寸和形貌等进行了表征。检测结果说明,制备的载药纳米Fe3O4/羧化壳聚糖磁性液体,其核心组份为晶型较好的Fe3O4磁性纳米微粒,磁性微粒的粒径范围为9~11nm;载药Fe3O4/羧化壳聚糖磁性复合微球成类球状;氨基酮戊酸、羧化壳聚糖和Fe3O4分子间发生了化学键的作用;在外加磁场作用下,观察到载药磁性液体的定向移动,有望实现在肿瘤治疗上的主动靶向给药作用。  相似文献   

16.
用微乳液聚合法制备了粒径均匀的聚苯乙烯-丙烯酸高分子微球P(St-co-AA),与共沉淀法所制纳米Fe3O4通过静电作用,使两种微球自组装成高磁含量的磁性微球[Fe3O4/P(St-co-AA)].采用XRD、TEM、SEM、IR等对样品进行表征,采用VSM对样品进行磁性能测试.结果表明P(St-co-AA)平均粒径约为70nm,表面含有羧基;所得磁粉为Fe3O4单相,平均粒径约为10nm.磁性能测试表明,当外加磁场为1.5×106/π(A/m)时,磁化强度达到饱和,饱和磁化强度为69A·m2·kg-1;自组装所制高分子磁性微球为球形,平均粒径约800nm,磁粉含量为15.8%.研究表明,pH值、搅拌等对复合磁性微球的形成有重要影响.  相似文献   

17.
通过化学共沉淀法制备了Fe3O4纳米磁性粒子作为内核,在其表面枝节一层引发剂,引发苯乙烯和丙烯酸的原子转移自由基聚合(ATRP)反应。通过SEM,TEM,IR,化学滴定法,表征,制备得到了粒径分布在40~50纳米,磁饱和强度为47.105emu/g,表面羧基含量在0.742mmol/g的磁性高分子复合微球。  相似文献   

18.
纳米Fe_3O_4磁性粒子的制备及其表面改性研究进展   总被引:2,自引:0,他引:2  
介绍了沉淀法、水热法、微乳液法、溶胶-凝胶法及高温分解法等合成纳米Fe3O4磁性粒子的方法及其特点。并对可用于纳米Fe3O4磁性粒子表面改性的表面化学法、溶胶-凝胶法、沉淀反应法、聚合物包覆法及静电自组装等改性方法进行了概述,最后对纳米Fe3O4磁性粒子的研究前景进行了展望。  相似文献   

19.
以经乳化剂修饰过的Fe3O4为核,环氧氯丙烷为交联剂,采用分散聚合法,合成了粒径为1.28~4.15μm、分散性较好、磁含量(Fe3O4)达68%的磁性交联β-环糊精聚合物微球.讨论了各种因素对合成条件的影响,对所得磁性微球的外观形态、磁响应性进行了表征,结果表明,该磁性微球可作为靶向药物载体.  相似文献   

20.
以环氧丙基三甲基氯化铵(ETA)为季铵化试剂,制备了壳聚糖季铵盐(QC)———N-2-羟丙基三甲基氯化铵壳聚糖,采用AgNO3电位滴定法测定了季铵化度。以柠檬酸钠为改性剂,一步法制备了水基Fe3O4磁性纳米粒子。基于静电自组装作用,采用反相微乳液法制备了QC/Fe3O4复合磁性纳米粒子。通过多种手段对所制备的复合磁性纳米粒子的结构进行了表征、对其性能进行了研究。红外光谱(FT-IR)、热重分析(TG)及X射线光电子能谱(XPS)的结果表明,QC主要包覆于Fe3O4的表面。透射电镜(TEM)、X射线衍射(XRD)结果表明,复合磁性纳米粒子磁核为Fe3O4晶体结构,平均粒径大约为50 nm~60 nm。VSM结果表明,所制备的复合磁性纳米粒子仍具有超顺磁性,比饱和磁化强度为19.4emu/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号