首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Phase transition behavior and influence of ions on the thermo-sensitive polyamide with polyethylene glycol as the main chain were studied in detail.By measuring the light transmission rates of polymer solutions,the change of its lower critical solution temperature(LCST)in the salt solution was investigated.It was found that a reversible phase transition of the polyamide occurred at the LCST and fi nished in a narrow temperature range.The LCST was associated with species of ions in salt solution.Anions had a great impact on the phase transition performance of the thermo-sensitive polyamide,while the cations had a slight influence on the phase transition.Different anions had different coagulation ability to ’salt-out’ the polyamide.The order was:CO32->SiO32->HPO42->OH->Cl->HCO3->HSO3->NO2->NO3-.  相似文献   

2.
Silver coatings on the exterior surface of monolithic activated carbon (MAC) with different morphology were prepared by directly immersing MAC into [Ag(NH3)2]NO3 solution. Acid and base treatments were employed to modify the surface oxygenic groups of MAC, respectively. The MACs’ Brunauer-Emmett-Teller (BET) surface area, surface groups, and silver coating morphology were characterized by N2 adsorption, elemental analysis (EA), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM), respectively. The coating morphology was found to be closely related to the surface area and surface functional groups of MAC. For a raw MAC which contained a variety of oxygenic groups, HNO3 treatment enhanced the relative amount of highly oxidized groups such as carboxyl and carbonates, which disfavored the deposition of silver particles. By contrast, NaOH treatment significantly improved the amount of carbonyl groups, which in turn improved the deposition amount of silver. Importantly, lamella silver was produced on raw MAC while NaOH treatment resulted in granular particles because of the capping effect of carbonyl groups. At appropriate [Ag(NH3)2]NO3 concentrations, silver nanoparticles smaller than 100 nm were homogeneously dispersed on NaOH-treated MAC. The successful tuning of the size and morphology of silver coatings on MAC is promising for novel applications in air purification and for antibacterial or aesthetic purposes.  相似文献   

3.
Calcium phosphate fiber was synthesized by homogeneous precipitation method using urea as precipitation agent. Effects of the reactant concentration and hydrothermal temperature on the calcium phosphate morphology and composition were studied using SEM, FTIR and XRD. It is found that fine octacalcium phosphate(OCP)fiber can be synthesized when the reactant concentrations are 0.167 mol/L for Ca(NO3)2, 0.1 mol/L for (NH4)2HPO4, and 0.6-0.7 mol/L for (NH2)2CO, respectively, with the initial reactant solution pH value around 2.2, hydrothermal temperature 90 ℃ and termination reaction at pH value around 5.0. At very low urea concentration, the product size distribution is highly inhomogeneous, however, at an excessively high concentration the product becomes larger and shorter and a mixture of OCP and hydroxyapatite (HA). Increasing the hydrothermal temperature is favorable to the fast precipitation of OCP, higher productivity and finer product.  相似文献   

4.
Mn-Zn ferrites (Mn1?x Zn x Fe2O4) with different compositions were prepared by the coprecipitation method, and the influences of such synthesis conditions as pH value, composition and volume ratio (R) of the mixed solution and NH4HCO3 solution on their microstructures and magnetic properties were discussed. The samples were characterized by X-ray diffraction (XRD) and magnetization measurement instrument. Lattice parameters and average crystalline size of the synthesized materials were calculated from the corresponding XRD patterns with the related software Jade.5. For samples of different pH values, only one phase was found when pH values were 7.0, 8.0 and 9.0. The sample with pH value of 7.0 exhibited the highest saturation magnetic induction, the lowest coercive force, and crystallized best. For samples of different R values with pH value of 7.0, only one phase was observed in all samples, and the sample with R value of 2.3 exhibited the highest saturation magnetic induction and the lowest coercive force. The composition has mainly afected the magnetic properties, and the saturation magnetic induction increases with the increase of the content of Zn (x), but decreases when x is beyond 0.6. The trend of coercive force is on the contrary. However, no magnetism is exhibited when the x value is up to 0.8.  相似文献   

5.
Uniform crystalline TiO2 thin films were coated on silica glass fibers by liquid phase deposition from aqueous solution of ammonium hexafluorotitanate at low temperature. TiO2 thin films and nanopowders were prepared by adding H3BO3 into (NH4)2TiF6 solution supersaturated with anatase nano-crystalline TiO2 at 40 ℃. The effects of the deposition conditions on the surface morphology, section morphology, thickness of the deposited TiO2 thin films were investigated. The results indicate that the growth rate and particle size of the thin films were controlled by both the deposition conditions and the amount of anatase nano-crystalline TiO2.  相似文献   

6.
The template effect controlling the structure and morphology of ultrafine particles was described. Ni(OH)2 powders were prepared by NH3 coordination-precipitation method. The effects of SO 4 2− , NO 3 , Cl, NH3, pH value on Ni(OH)2 structure and morphology were investigated experimentally, explained with the theoretical model that the growth units were the polyhedral structure of coordination anions. The results showed that the structure and morphology of Ni(OH)2 were effectively controlled by the growth units, the dimensions and the linking patterns of the growth units vary with the changes of physical and chemical conditions in the aqueous solution. Foundation item: The National Natural Science Foundation of China(No.59774018) Biography of the first author: LIU Zhi-hong, professor, born in 1963, majoring in hydrometallurgical technology and control of structure and morphology of powders.  相似文献   

7.
Duringrecentyearspolyaniline(PAN)hasbecomeoneofthemostpromisingconductivepoly mersforpracticalapplicationduetoitshighenvi ronmentalstabilityandhighconductivity[1 3] .PANcanbesynthesizedbychemicaloxidationandelectrochemicalpolymerization[4 6 ] .However,theconju…  相似文献   

8.
Nitrogen-doped TiO2 nanocrystalline powders were prepared by hydrolysis of tetrachloride titanium (TiCl4) in a mixed solution of ethanol and ammonium nitrate (NH4NO3) at ambient temperature and atmosphere followed by calcination at 400 ℃ for 2 h in air. FTIR spectra demonstrate that amine group in original gel is eliminated by calcination, and the TiO2 powder is liable to absorb water onto its surface and into its capillary pore. XRD and SEM results show that the average size of nanocrystalline TiO2 particles is no more than 60 nm and with increasing the calcination temperature, the size of particles increases. XPS studies indicate the nitrogen atom enters into the TiO2 lattice and occupies the position of oxygen atom. The nitrogen doping not only depresses the grain growth of TiO2 particles, but also reduces the phase transformation temperature of anatase to futile. The photocatalytic activity of the nitrogen-doped TiO2 powders has been evaluated by experiments of photocatalytic degradation aqueous methylene blue.  相似文献   

9.
Preparation of AgSnO2 composite powders by hydrothermal process   总被引:2,自引:0,他引:2  
Silver-tin oxide powders were synthesized by the hydrothermal method with Ag(NH3)2^+ solution and Na2SnO3 solution as raw materials and Na2SO3 as reductant. The precipitation conditions of Na2SnO3 solution and the reduction conditions of Ag(NH3)2^+ were also investigated. The powders prepared were characterized by differential thermal analysis (DTA), X-ray diffraction analysis (XRD), scanning electron microscope (SEM) and energy spectrum analysis, The results show that pH value of the solution is a key parameter in the formation of Sn(OH)4 precipitate and the reduction reaction of Ag(NH3)2^+ can release H^+ ions, which results in synchronous precipitation of Sn(OH)6^2- as Sn(OH)4. The reduction of Ag(NH3)2^+ and precipitation of Na2SnO3 occur simultaneously and the coprecipitation of silver and tin oxide is reached by the hydrothermal method. The silver-tin oxide composite powders have mainly flake shape of about 0.3 μm in thickness and there exists homogeneous distribution of tin oxide and silver in the powder synthesized.  相似文献   

10.
In this paper we describe a route to produce crystalline Mg(OH)2 nanopowders from serpentinite ore distributed in the Halilovskiy array(Russia, Orenburg region). An efficient extraction route consisting of treatment on serpentinite in 40% HNO_3 at 80 °C followed by NH_4OH titration for Mg(OH)_2 precipitation was demonstrated. In this study, crystalline Mg(OH)2 nanopowders have been synthesized by solvothermal reaction method using(Mg(NO_3)_2á6H_2O) which were obtained from serpentinite, NH4 OH as a precipitator, and hydroxyethylated nonylphenol as surface-active substance. Microstructure and phase composition of samples were investigated employing scanning electron microscopy(SEM) and transmission electron microscopy(TEM), X-ray phase analysis(XRD), and inductively coupled plasma optical emission spectroscopy(ICP-OES). XRD reveals that Mg(OH)2 nanopowder with high purity has the brucite structure. It was found that crystalline Mg(OH)_2 nanopowders exclusively consist of lamellar-like structures and the sizes of Mg(OH)_2 are 30–265 nm length or width.  相似文献   

11.
The Ytterbium doped gadolinium gallium garnet [Yb3+:Gd3Ga5O12, Yb:GGG] precursor powders were synthesized via homogeneous precipitation method using Yb2O3, Ga2O3, Gd2O3 and ammonium bicarbonate [NH4HCO3] as precipitator, and ammonium sulfate [(NH4)2SO4] as additive. The evolution of phase composition and micro-structure of the powders were characterized by — TG DTA, XRD, IR, and TEM. The results indicate that all precursor powders completely transform to Yb:GGG phase by calcining at 900 °C for 8 h, the resultant powders are well dispersed and have smaller particle size approximately 80 nm owing to the electrostatic effect.  相似文献   

12.
Dispersing and doping of BaTiO3 powder by adsorption method were investigated. Ultrafine BaTiO3 powders were dispersed in the aqueous with ammoniumized citrate (NHa-CA) or ammoniumized citric lanthanum chelate (NH4-La-CA) as dispersant by ultrasonic bath. Better dispersion of BaTiO3 slurry was obtained in the aqueous with NH4-La-CA than that of NH4-CA when the mass ratio of citric acid (CA) to BaTiO3 was less than 0,007. The pH value hardly affects the dispersion property of BaTiO3 suspension dispersed by NH4-La-CA. BaTiO3 powder could be well dispersed (median size D50=0.45 μm) and also doped with high uniformity of added components by adsorbing citric acid chelate on surface. Compared with solid mixing, better microstructure and properties of La/Mn codoped ceramics were obtained by adsorption method.  相似文献   

13.
Surface chemical properties of typical commercial coal-based activated cokes were characterized by X-ray photoelectron spectroscopy (XPS) and acid-base titration, and then the influence of surface chemical properties on catalytic performance of activated cokes of NO reduction with NH3 was investigated in a fixed-bed quartz micro reactor at 150 °C. The results indicate that the selective catalytic reduction (SCR) activity of activated cokes with the increase of its surface acidic sites and oxygen content, obviously, a correlation between catalytic activity and surface acidic sites content by titration has higher linearity than catalytic activity and surface oxygen content by XPS. While basic sites content by acid-base titration have not correlation with SCR activity. It has been proposed that surface basic sites content measured by titration may not be on adjacent of acidic surface oxides and then cannot form of NO2-like species, thus the reaction of reduction of NO with NH3 have been retarded.  相似文献   

14.
Silicide coating was prepared on electro-deposited nickel layer by the slurry pack cementation process on copper matrix at 1173 K for 12 h using SiO2 as Si source, pure Al powder as reducer, a dual activator of NaF+NH4Cl and albumen (egg white) as cohesive agent. Microstructure, properties and siliconizing mechanism of silicide coating were discussed. The experimental results show that the silicide coating with 220 μm thickness is mainly composed of a Ni2Si phase and a small amount of Ni31Si12 phase. Its mean microhardness (HV 790) is ten times than that of copper substrate (HV 70). The coefficient of friction decreases from 0.8 of pure copper to about 0.3 of the siliconzed sample. SiF2, SiCl2 and SiCl3 are responsible for the transportation and deposition of Si during the slurry pack cementation process.  相似文献   

15.
通过在水溶液中将由磷酸氢氨和硝酸钙制得的“盐溶液”与由钛酸正丁酯和冰醋酸制得的“酯溶液”反应,并将产物在800 ℃下活化4 h,获得二氧化钛与羟基磷灰石的纳米复合物.用X射线衍射、红外光谱和透射电镜(TEM)对纳米复合物的组成和结构进行了研究.红外光谱显示了TiO2和PO4-3的两个特征峰,证实了纳米复合物由二氧化钛和羟基磷灰石组成.透射电镜表明,羟基磷灰石包覆在二氧化钛微晶颗粒的表面,形成颗粒尺寸约为100 nm的二氧化钛/羟基磷灰石复合物.X射线衍射图谱显示所得的二氧化钛与羟基磷灰石纳米复合物在2θ = 30°~35 °处出现3个新的衍射峰,说明纳米复合物的二氧化钛与羟基磷灰石界面上可能生成了分子复合物.  相似文献   

16.
废水处理过程中涉及多种氮转化途径,其中,异化硝酸盐还原为铵(Dissimilatory Nitrate Reduction to Ammonium,DNRA)能够将NO3-/NO2-转化为NH4+,是氮素转化的重要一环。概述了DNRA过程的两步反应机理以及涉及的微生物,着重讨论了废水处理中影响DNRA过程的潜在因素,包括溶解氧、碳源种类、氮源种类、碳氮比、温度、pH值以及废水成分等,总结分析了各种因素如何调控DNRA与反硝化过程对硝态氮的竞争,并对废水处理中DNRA过程的两种主要分析手段进行了介绍。综述了DNRA过程在废水处理中的发生机制及其贡献,对未来DNRA过程的深入研究及废水中氮的去除或回收具有重要意义。  相似文献   

17.
We investigated the impure phase problem and summarized its two formation mechanisms of YAG powders synthesized via the co-precipitation method.The ions loss problem caused by high concentration reaction solution in the titration process was emphatically studied,and the corresponding thermodynamic explanation was carried out.In addition,influence of powder crystallinity and its new qualitative and quantitative standards were studied.One reason of impure phase is the local nonuniform mixture of Y and Al elements in precursor,which easily causes intermediate phases during calcination and difficulty of high pure powders at low temperatures.The other reason is the precipitation dissolution during titration and then the Y~(3+)/Al~(3+) loss,caused by high concentration of reaction solution.The powder crystallinity can be promoted by increasing calcination temperature or holding time of precursor.Besides the routine XRD method,the TEM-EDX method should be also introduced to directly determine the quality of crystallinity.  相似文献   

18.
A coprecipitation/hydrothermal route was utilized to fabricate pure phase BiFeO3 powders using FeCl3·6H2O and Bi(NO3)3·5H2O as starting materials, ammonia as precipitant and NaOH as mineralizer. The synthesized powders were characterized by XRD, SEM and DSC-TG analysis. In the process, single-phase BiFeO3 powders could be obtained at a hydrothermal reaction temperature of 180 ℃, with NaOH of 0.15 mol/L, in contrast to 200 ℃ and 4 mol/L for conventional hydrothermal route. Meanwhile, the micro-morphology of synthesized BiFeO3 powders changed with different reaction temperatures and concentrations of NaOH. The N6el temperature, Curie temperature and decomposition temperature of the synthesized BiFeO3 powders were detected to be 301 ℃, 828 ℃ and 964 ℃, respectively. The hydrothermal reactions mechanism to fabricate BiFeO3 powders were discussed based on the in-situ transformation process.  相似文献   

19.
The effects of cerium nitrite on corrosion behaviors of carbon steel in simulated concrete pore solutions were studied with the methods of linear polarization, electrochemical impedance spectroscopy and surface analysis. In pore solutions in the presence of Ce(NO3)3?6H2O, the corrosion potential, polarization resistance and impedance of carbon steel obviously increased in contrast to the situation in the absence of cerium salts. The pore solution with [NO2-] / [Cl-] = 0.3 and 0.1% Ce(NO3)3?6H2O, carbon steel shows better corrosion resistance than that in the pore solution with [NO2-] / [Cl-] = 0.6, which indicates that a small amount of Ce(NO3)3?6H2O in pore solutions can effectively promote passivation of the steel and reduce the threshold [NO2-] / [Cl-] ratio for corrosion control. The surface layer formed in cerium salt containing pore solutions is more compact and smooth and 1.36%Ce is examined on the sample surface. The addition of 0.1% Ce(NO3)3?6H2O in pore solutions can decrease the corrosion rate of steel in pore solutions and has little influence on pH change of the solutions. However, more cerium nitrate addition above 0.1% may result in pH decrease of the solution.  相似文献   

20.
The solid sodium hydroxide neutralized acidic As-containing wastewater till pH value was 6. Green copper arsenite was prepared after copper sulfate was added into the neutralized wastewater when the molar ratio of Cu to As was 2:1 and pH value of the neutralized wastewater was adjusted to 8.0 by sodium hydroxide. The arsenious acid solution and red residue were produced after copper arsenite mixed with water according to the ratio of liquid to solid of 4:1 and copper arsenite was reduced by SO2 at 60 °C for 1 h. The white powder was gained after the arsenious acid solution was evaporated and cooled. Copper sulfate solution was obtained after the red residue was leached by H2SO4 solution under the action of air. The results show that red residue is Cu3(SO3)2·2H2O and the white powder is As2O3. The leaching rate of Cu reaches 99.00% when the leaching time is 1.5 h, molar ratio of H2SO4 to Cu is 1.70, H2SO4 concentration is 24% and the leaching temperature is 80 °C. The direct recovery rate of copper sulfate is 79.11% and the content of CuSO4·5H2O is up to 98.33% in the product after evaporating and cooling the copper sulfate solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号