首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Free radical copolymerization kinetics of 2‐(diisopropylamino)ethyl methacrylate (DPA) with styrene (ST) or methyl methacrylate (MMA) was investigated and the corresponding copolymers obtained were characterized. Polymerization was performed using tert‐butylperoxy‐2‐ethylhexanoate (0.01 mol dm?3) as initiator, isothermally (70 °C) to low conversions (<10 wt%) in a wide range of copolymer compositions (10 mol% steps). The reactivity ratios of the monomers were calculated using linear Kelen–Tüd?s (KT) and nonlinear Tidwell–Mortimer (TM) methods. The reactivity ratios for MMA/DPA were found to be r1 = 0.99 and r2 = 1.00 (KT), r1 = 0.99 and r2 = 1.03 (TM); for the ST/DPA system r1 = 2.74, r2 = 0.54 (KT) and r1 = 2.48, r2 = 0.49 (TM). It can be concluded that copolymerization of MMA with DPA is ideal while copolymerization of ST with DPA has a small but noticeable tendency for block copolymer building. The probabilities for formations of dyad and triad monomer sequences dependent on monomer compositions were calculated from the obtained reactivity ratios. The molar mass distribution, thermal stability and glass transition temperatures of synthesized copolymers were determined. Hydrophobicity of copolymers depending on the composition was determined using contact angle measurements, decreasing from hydrophobic polystyrene and poly(methyl methacrylate) to hydrophilic DPA. Copolymerization reactivity ratios are crucial for the control of copolymer structural properties and conversion heterogeneity that greatly influence the applications of copolymers as rheology modifiers of lubricating oils or in drug delivery systems. © 2015 Society of Chemical Industry  相似文献   

2.
Two new monomers based on thioxanthone, 2-(3′-acryloxy)propoxythioxanthone (M-2) and 1-methyl-4-(3′-acryloxy)propoxythioxanthone (M-4), were prepared and their radical copolymerization at 70°C with methyl methacrylate (MMA) was studied. By varying the conversion reached for a fixed feed composition, fMMA=0·983, and using Jaacks method, the reactivity ratios were determined. Identical values of reactivity ratios were found for both systems, with values of rMMA=2·46 and rM-2=rM-4=0·4. The homopolymerization of MMA in the presence of a model compound, 1-methyl-4-propoxythioxanthone, was also examined and confirmed that the thioxanthone chromophore does not have any influence on the free radical polymerization of MMA. © of SCI.  相似文献   

3.
Self-associating copolymers of methacrylic acid (MAA) with poly (ethylene glycol) monomethacrylate (PEGMA) were prepared by free radical copolymerization of MAA with PEGMA using dispersion polymerization in D2O, or solution polymerization in a 50/50 ethanol–D2O mixture. These copolymers have been studied as components of reversible hydrogels1 and in medical applications.2 In order to understand the relationship between the copolymer structure and its performance, it is important to determine the sequence distribution of the copolymer. The copolymer architecture is determined by the reactivity ratios and integrated instantaneous feed compositions. The reactivity ratios were determined using the first-order Markov method3 by running a series of reactions at various initial monomer ratios and determining the monomer incorporation into the copolymer as a function of time, via 1H nuclear magnetic resonance. The reactivity ratios for dispersion copolymerizations of MAA with PEGMA in water were determined to be r1 = 1.03 and r2 = 1.02, whereas solution copolymerization in 50/50 EtOH–H2O gave reactivity ratios of r1 = 2.0 and r2 = 3.6. These results show that the reactivity ratios and copolymer architecture are influenced by the solvent system. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 1019–1025, 1998  相似文献   

4.
Vinyl acetate/methyl acrylate (V/M) copolymers were prepared by free-radical solution polymerization in benzene. Copolymer compositions were obtained from 1H-NMR spectroscopy. Reactivity ratios for the copolymerization of V with M were calculated using the Kelen-Tudos (KT) and the nonlinear error in variables (EVM) methods. The reactivity ratios obtained from the KT and EV methods are rV = 0.04 ± 0.03 and rM = 7.28 ± 2.88 and rv = 0.04 ± 0.01 and rM = 7.28 ± 0.37, respectively. The microstructure was obtained in terms of the distribution of V- and M-centered triad sequences from 13C{1H}-NMR spectra of copolymers. Homonuclear 1H-2D-COSY and 2D-NOESY NMR were used to determine the most probable conformer for the V/M copolymer. The copolymerization behavior of the V/M copolymers as a function of conversion is also reported. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
Atom transfer radical bulk copolymerization of styrene (St) and methyl acrylate (MA) initiated with trichloromethyl‐terminated poly(vinyl acetate) macroinitiator was performed in the presence of CuCl/PMDETA as a catalyst system at 90°C. Linear dependence of ln[M]0/[M] versus time data along with narrow polydispersity of molecular weight distribution revealed that all the homo‐ and copolymerization reactions proceed according to the controlled/living characteristic. To obtain more reliable monomer reactivity ratios, the cumulative average copolymer composition at moderate to high conversion was determined by 1H‐NMR spectroscopy. Reactivity ratios of St and MA were calculated by the extended Kelen‐Tudos (KT) and Mao‐Huglin (MH) methods to be rSt = 1.018 ± 0.060, rMA = 0.177 ± 0.025 and rSt = 1.016 ± 0.053, rMA = 0.179 ± 0.023, respectively, which are in a good agreement with those reported for the conventional free‐radical copolymerization of St and MA. Good agreement between the theoretical and experimental composition drifts in the comonomer mixture and copolymer as a function of the overall monomer conversion were observed, indicating that the reactivity ratios calculated by copolymer composition at the moderate to high conversion are accurate. Instantaneous copolymer composition curve and number‐average sequence length of comonomers in the copolymer indicated that the copolymerization system tends to produce a random copolymer. However, MA‐centered triad distribution results indicate that the spontaneous gradient copolymers can also be obtained when the mole fraction of MA in the initial comonomer mixture is high enough. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
Semicontinuous emulsion copolymerization of acrylonitrile (M1), butyl acrylate (M2), and styrene (M3) was investigated. The copolymerization proceeded under the conditions used with a high degree of conversion, whereby a stationary state characterized by a constant monomer mixture composition and a constant composition of the arising copolymer was achieved. From the analytically estimated free monomers and arising copolymer compositions, the reactivity ratios for the pair AN/BA r12 = 0.71, r21 = 1.17 and for the pair AN/Sty r13 = 0.06, r31 = 0.28 were calculated. The applicability of the reactivity ratios found was verified also for the ternary system acrylonitrile/butyl acrylate/styrene.  相似文献   

7.
4‐Acetamidophenyl acrylate (APA) was synthesized and characterized by IR, 1H and 13C NMR spectroscopies. Homo‐ and copolymers of APA with acrylonitrile (AN) and N‐vinyl‐2‐pyrrolidone (NVP) were prepared by a free radical polymerization. All the copolymer compositions have been determined by 1H NMR technique, and the reactivity ratios of the monomer pairs have been evaluated using the linearization methods Fineman–Ross, Kelen–Tudos, and extended Kelen–Tudos. Nonlinear error‐in‐variable model (EVM) method was used to compare the reactivity ratios. The reactivity ratios for copoly(APA–AN) system were APA(r1) = 0.70 and AN(r2) = 0.333, and for copoly(APA–NVP) system the values were APA(r1) = 4.99 and NVP(r2) = 0.019. Thermal stability and molecular weights of the copolymers are reported. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1919–1927, 2006  相似文献   

8.
A tertierbutylphenoxy group containing methacrylate based monomer 2-(4-tert-butylphenoxy)-2-oxo-ethyl methacrylate (TBPOEMA) was synthesized by reacting 4-tertierbutylphenyl chloroacetate (TBPClAcO) with sodium methacrylate in acetonitrile. TBPClAcO was prepared by reacting tertierbutylphenol dissolved in benzene with chloroacetylchloride. The free-radical-initiated copolymerization of TBPOEMA, with methyl methacrylate (MMA) and styrene (ST) was carried out in dimethylsulphoxide (DMSO) solution at 65°C using 2,2-azobisisobutyronitrile (AIBN) as an initiator with different monomer-to-monomer ratios in the feed. The monomer TBPOEMA and copolymers were characterized by FTIR, 1H- and 13C-NMR spectral studies. The copolymer composition obtained from the 1H-NMR spectra led to the determination of reactivity ratios. The reactivity ratios of the monomers were determined by the application of Finemann–Ross and Kelen–Tüdös linear methods and the Behnken nonlinear least-squares method. The analysis of reactivity ratios revealed that MMA and ST are more reactive than TBPOEMA, and copolymers formed are statistical in nature. The molecular weights w and n) and polydispersity index of the polymers were determined using gel permation chromagtography. Thermogravimetric analysis of the polymers reveal that the thermal stability of the copolymers increases with an increase in the mole fraction of TBPOEMA in the copolymers. Glass transition temperatures of the copolymers were found to decrease with an increase in the mole fraction of TBPOEMA in the copolymers. The apparent thermal decomposition activation energies (E d) were calculated by Ozawa method using the SETARAM Labsys TGA thermobalance.  相似文献   

9.
The bulk free radical copolymerization of D-limonene and 2-ethylhexyl acrylate (EHA) was conducted at 80°C using benzoyl peroxide (BPO) as initiator. Low conversion experiments were conducted to estimate the copolymer reactivity ratios. The reactivity ratios r1 = 6.896 and r2 = 0.032 (1 = EHA, 2 = d-limonene) were obtained using a non-linear, error-in-variables method with the RREVM computer program. High conversion experiments were performed and revealed that a degradative chain transfer mechanism for D-limonene dominated the polymerization.  相似文献   

10.
Copolymerization of styrene and 2‐hydroxyethyl methacrylate (2‐HEMA) was carried out in a microemulsion medium. The composition of the copolymers was estimated using proton 1H‐NMR. The reactivity ratios of styrene and 2‐HEMA in ternary microemulsions were observed and were considerable different from those reported for solution and bulk polymerization. In monomer pairs with a considerable difference in polarity, partitioning of a monomer between the aqueous phase and the microemulsion droplets develops a concentration gradient, which can be calculated from the distribution coefficient of the monomer between the two phases. This approach has led to more reliable reactivity ratios for the monomers. The study of styrene–2‐HEMA copolymerization in a sodium dodecylsulfate‐based microemulsion resulted in rS = 3.79 and rH = 0.17 as apparent reactivity ratios and rS = 0.57 and rH = 23.24 as true reactivity ratios for styrene and 2‐HEMA, respectively. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1832–1837, 2002; DOI 10.1002/app.10401  相似文献   

11.
2-thiozyl methacrylamide (TMA) was synthesized by the reaction of 2-aminothiazole with either methacryloyl chloride or methacrylic acid in the presence of triethylamine and N, N′-dicyclohexylcarbodiimide, respectively. Binary copolymerization reactions of the prepared monomer with methyl acrylate (MA), ethyl acrylate (EA), n-butyl acrylate (BA) and tert-butylacrylate (t.BA) were performed in dimethylformamide at 65 ○C using 1 mol% azobisisobutyronitrile (AIBN) as initiator. The structure of the 2-thiozyl methacrylamide monomer and the prepared copolymers was investigated by IR and 1H NMR spectroscopy. The copolymer compositions were determined from sulphur analysis. Copolymerization parameters for each system were calculated by the Finemen–Ross and Kelen–Tüdös methods. The monomer reactivity ratios for the systems TMA-MA, TMA-EA, TMA-BA, and TMA-tBA were found to be r1=0.128, r2=0.740; r1=0.235, r2=0.420; r1=0.420, r2=0.330 and r1=1.690, r2=0.027, respectively. The reactivities of acrylic esters decrease as the alkyl group become bulkier. The average Q and e values for TMA were calculated from the monomer reactivity ratios determined in the present and previous studies.  相似文献   

12.
The copolymerization reactivity ratios of acrylic acid and acrylamide are found at pH 5 and pH 2. Automatic continuous online monitoring of polymerization reactions (ACOMP) has been used for the first time to monitor the synthesis of polyelectrolytic copolymers. The composition drift during the reactions revealed that at pH 5, the acrylamide participates more in the copolymer, and at pH 2, the acrylic acid incorporates in the system at a higher ratio. The copolymerization data were analyzed by a recent error in variables (EVM) type calculation method developed for obtaining the reactivity ratios by on‐line monitoring and gave at pH 5 reactivity ratios rAam = 1.88 ± 0.17, rAac = 0.80 ± 0.07 and at pH 2 rAam = 0.16 ± 0.04, rAac = 0.88 ± 0.08. The results show that the reactivity ratios depend strongly on the pH of the medium. The effect of polyelectrolytic interactions on the reactivity ratios is discussed in detail. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 968–974, 2007  相似文献   

13.
The article describes the synthesis and characterization of N‐(4‐methoxy‐3‐chlorophenyl) itaconimide (MCPI) and N‐(2‐methoxy‐5‐chlorophenyl) itaconimide (OMCPI) obtained by reacting itaconic anhydride with 4‐methoxy‐3‐chloroanisidine and 2‐methoxy‐5‐chloroanisidine, respectively. Structural and thermal characterization of MCPI and OMCPI monomers was done by using 1H NMR, FTIR, and differential scanning calorimetry (DSC). Copolymerization of MCPI or OMCPI with methyl methacrylate (MMA) in solution was carried out at 60°C using AIBN as an initiator and THF as solvent. Feed compositions having varying mole fractions of MCPI and OMCPI ranging from 0.1 to 0.5 were taken to prepare copolymers. Copolymerizations were terminated at low percentage conversion. Structural characterization of copolymers was done by FTIR, 1H NMR, and elemental analysis and percent nitrogen content was used to calculate the copolymer composition. The monomer reactivity ratios for MMA–MCPI copolymers were found to be r1 (MMA) = 0.32 ± 0.03 and r2 (MCPI) = 1.54 ± 0.05 and that for MMA–OMCPI copolymers were r1 (MMA) = 0.15 ± 0.02 and r2 (OMCPI) = 1.23 ± 0.18. The intrinsic viscosity [η] of the copolymers decreased with increasing mole fraction of MCPI/or OMCPI. The glass transition temperature as determined from DSC scans was found to increase with increasing amounts of OMPCI in copolymers. A significant improvement in the char yield as determined by thermogravimetry was observed upon copolymerization. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2391–2398, 2006  相似文献   

14.
Monomer reactivity ratios of acrylonitrile/ammonium itaconate during aqueous‐deposited copolymerization initiated by ammonium persulfate were investigated. Kelen–Tudos method was used to examine the reactivity ratios. It was shown that the reactivity ratios were influenced by the conversions and temperatures of copolymerization. The reactivity ratios in aqueous‐deposited copolymerization system were similar to those in the solution polymerization system at polymerization conversions of less than 5% [reactivity ratio of acrylonitrile (r1) 0.842 ± 0.02, reactivity ratio of ammonium itaconate (r2) = 3.624 ± 0.02]. The reactivity ratio of AN rises and that of (NH4)2IA decreases, when the polymerization conversion increases till 13%. Aqueous‐deposited copolymerization initiated by AIBN was also studied. It was found that some polymers were formed in water phase and the monomers had different reactivity ratios by comparison with those initiated by ammonium persulfate. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4645–4648, 2006  相似文献   

15.
The Ritter reaction of plant oil triglycerides (such as soybean and sunflower oil) with acrylonitrile was used to introduce acrylamide functionality on the triglyceride. Acrylonitrile and triglycerides were reacted in the presence of H2SO4, and acrylamide derivatives were obtained in yields of 45 and 50% for sunflower oil and soybean oil, respectively. Radical initiated copolymerization of the acrylamide derivatives of the triglycerides with styrene produced semirigid polymers. Characterization of new monomers and polymers was done by 1H‐NMR, 13C‐NMR, IR, and MS. The swelling behavior of the crosslinked network polymers was determined in different solvents. Glass transiton temperature (Tg) of the cured resin was also determined by differential scanning calorimeter to be 40°C for soybean based polymer and 30°C for sunflower‐based polymer. Homo‐ and copolymerization behavior of acrylamide derivatives of methyl oleate (MOA) and methyl 10‐undecenoate (MUA) were also investigated. The reactivity ratios of these monomers with respect to styrene were determined by the Fineman–Ross method using 1H‐NMR spectroscopic data. The reactivity ratios were rsty = 1.776; rmoa = 0512 for MOA, and rsty = 1.142; rmua = 0.507 for MUA, respectively. Photopolymerization behaviors of MOA and MUA were also investigated using the photoDSC technique and the rate of polymerization of MUA is higher than that of MOA under the same conditions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 2264–2272, 2005  相似文献   

16.
Summary The bulk free radical copolymerization of 2-hydroxyethyl methacrylate (HEMA) with N-vinyl-2-pyrrolidone (VP) was carried out to low conversions at 50 °C, using benzoyl peroxide (BPO) as initiator. The compositions of the copolymers were determined using 13C NMR spectroscopy. The conversion of monomers to polymers was studied using FT-NIR spectroscopy in order to predict the extent of conversion of monomer to polymer. From model fits to the composition data, a statistical F-test revealed that the penultimate model describes the copolymerization better than the terminal model. Reactivity ratios were calculated by using a non-linear least squares analysis (NLLS) and r H = 8.18 and r V = 0.097 were found to be the best fit values of the reactivity ratios for the terminal model and r HH = 12.0, r VH = 2.20, r VV = 0.12 and r HV = 0.03 for the penultimate model. Predictions were made for changes in compositions as a function of conversion based upon the terminal and penultimate models. Received: 27 Febuary 2001/Revised version: 5 November 2001/Accepted: 6 November 2001  相似文献   

17.
In this study, methyl oleate was bromoacrylated in the presence of N‐bromosuccinimide and acrylic acid in one step. Homopolymers and copolymers of bromoacrylated methyl oleate (BAMO) were synthesized by free radical bulk polymerization and photopolymerization techniques. Azobisisobutyronitrile (AIBN) and 2,2‐dimethoxy‐2‐phenyl‐acetophenone were used as initiators. The new monomer BAMO was characterized by FTIR, GC‐MS, 1H, and 13C‐NMR spectroscopy. Styrene (STY), methylmethacrylate (MMA), and vinyl acetate (VA) were used for copolymerization. The polymers synthesized were characterized by FTIR, 1H‐NMR, 13C‐NMR, and differential scanning calorimetry (DSC). Molecular weight and polydispersities of the copolymers were determined by GPC analysis. Ten different feed ratios of the monomers STY and BAMO were used for the calculation of reactivity ratios. The reactivity ratios were determined by the Fineman–Ross and Kelen–Tudos methods using 1H‐NMR spectroscopic data. The reactivity ratios were found to be rsty = 0.891 (Fineman–Ross method), 0.859 (Kelen–Tudos method); rbamo = 0.671 (Fineman–Ross method), 0.524 (Kelen–Tudos method). © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2475–2488, 2004  相似文献   

18.
Free-radical solution terpolymerization of acrylamide, acrylic acid, and acrylonitrile was carried out in a mixture of dimethylformamide and water (60 : 40,v/v) at 85°C using benzoyl peroxide as the initiator. The polymers were characterized by elemental analysis, IR, 1H-NMR, TGA, and viscosity measurements. Elemental analysis data were used to evaluate the terpolymer composition. The reactivity ratios were determined by Fineman–Ross and Kelen–Tudos methods. The reactivity ratios (r) for the copolymerization of (1) acrylic acid + acrylonitrile with (2) acrylamide was found to be r1 = 0.86 ± 0.09 and r2 = 1.93 ± 0.03, respectively, by the Kelen–Tudos method. The Fineman–Ross method yielded a value of r1 = 0.86 ± 0.05 and r2 = 1.94 ± 0.09, respectively. The activation energy values for various stages of decomposition were calculated from TGA analysis. Voluminosity (VE) and the shape factor (ν) were also computed from the viscosity measurements in different ratios of the solvent mixture. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 217–228, 1998  相似文献   

19.
Vinylidene chloride/ethyl acrylate (V/E) copolymers were prepared by photopolymerization using uranyl ion as a photosensitizer at room temperature. Copolymers were characterized by chlorine estimation, gel permeation chromatography, 1H- and 13C-NMR, 2D heteronuclear single quantum correlation (HSQC), and homonuclear 1H–2D double quantum filter correlation spectroscopy (DQF-COSY). Reactivity ratios for the copolymerization of V with E were calculated using the Kelen-Tudos (KT) and the nonlinear error in variables (EVM) methods. The reactivity ratios obtained from the EVM methods are rV = 0.80 ± 0.15 and rE = 0.87 ± 0.04. The microstructure was calculated in terms of the distribution of V- and E-centered triad sequences from 13C{1H}-NMR spectra of the copolymers. 2D HSQC was used to analyze the complex 1H-NMR spectrum and 2D COSY shows the various bond interactions, thus inferring the possible structure of the copolymers. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 417–426, 1998  相似文献   

20.
The copolymerization of acrylamide (AM) with sodium allylsulfonate (SAS) was studied. The copolymerization rate equation was determined, Rp = K[KPS]0.70[AM]1.60[SAS]?0.60. The copolymeric composition obtained by nitrogen and sulfur elemental analysis, and 1H-NMR method. The reactivity ratios were calculated by the Kelen–Tudos method and the value of r1(AM), r2(SAS) was determined to be 2.45 and 0.060, respectively. The rheology of aqueous solution of synthetic poly(acrylamide-co-sodium allylsulfonate) was determined at different temperatures and flowing activation energy Eη were calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号