首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shear wave splitting measurements from S arrivals of local earthquakes recorded at the Incorporated Research Institutions for Seismology (IRIS) broadband sensor SNZO are used to determine a basic anisotropic structure for the subduction zone in the Wellington region. With the use of high-frequency filters, fast anisotropic polarization ( φ ) and splitting time ( δt ) measurements typical of crustal anisotropy are evident, but the larger splitting expected from the mantle is often not resolved. The small splitting seen agrees well with the results of previous studies concerning shallow crustal anisotropy. With the use of lower-frequency filters, measurements more consistent with mantle anisotropy are made. Anisotropy of 4.4 ± 0.9 per cent with a fast polarization of 29° ± 38° is calculated for the subducting slab, from 20 to 70  km depth. Using this result in addition to the results of previous studies, a model is proposed. The model requires a frequency-dependent anisotropy of less than 1.4 per cent when measured with a period of ~2  s to be present in the sub-slab mantle.
Separate from this population, a band of events in northern Cook Strait with an 86° ± 10° fast polarization is seen. This is at about 40° from the strike of the Hikurangi margin, and suggests a source of shear strain 40° removed from that found in the majority of the region. The cause of this is probably a deformation in the subducting slab in this region, as it moves towards a greater incline to the south.  相似文献   

2.
Split S waves observed at Hockley, Texas from events in the Tonga–Fiji region of the southwest Pacific show predominantly vertically polarized shear-wave ( SV  ) energy arriving earlier than horizontally polarized ( SH ) energy for rays propagating horizontally through D" . After corrections are made for the effects of upper-mantle anisotropy beneath Hockley, a time lag of 1.5 to 2.0  s remains for the furthest events (93.9°–100.6° ), while the time lags of the nearer observations (90.5°–92.9° ) nearly disappear. At closer distances, the S waves from these same events do not penetrate as deeply into the lower mantle, and are not split. These observations suggest that a patch of D" beneath the central Pacific is anisotropic, while the mantle immediately above the patch is isotropic. The thickness of the anisotropic zone appears to be of the order of 100–200  km.
  Observations of shear-wave splitting have previously been made for paths that traverse D" under the Caribbean and under Alaska. SH leads SV , the reverse of the Hockley observations, but in these areas the fact that SV  leads SH in the HKT data shown here suggests a different sort of anisotropy under the central Pacific from that under Alaska and the Caribbean. The case of SH travelling faster than SV  is consistent with transverse isotropy with a vertical axis of symmetry (VTI) and does not require variations with azimuth. The case of SV  leading SH is consistent with transverse isotropy with a horizontal axis of symmetry (HTI), an azimuthally anisotropic medium, and with a VTI medium formed by a hexagonal crystal. Given that (Mg,Fe)SiO3 perovskite appears unlikely to form anisotropic fabrics on a large scale, the presence of anisotropy may point to chemical heterogeneity in the lowermost mantle, possibly due to mantle–core interactions.  相似文献   

3.
P-SH conversion is commonly observed in teleseismic P waves, and is often attributed to dipping interfaces beneath the receiver. Our modelling suggests an alternative explanation in terms of flat-layered anisotropy. We use reflectivity techniques to compute three-component synthetic seismograms in a 1-D anisotropic layered medium. For each layer of the medium, we prescribe values of seismic velocities and hexagonally symmetric anisotropy about a common symmetry axis of arbitrary orientation. A compressional wave in an anisotropic velocity structure suffers conversion to both SV -and SH -polarized shear waves, unless the axis of symmetry is everywhere vertical or the wave travels parallel to all symmetry axes. The P-SV conversion forms the basis of the widely used 'receiver function' technique. The P-SH conversion occurs at interfaces where one or both layers are anisotropic. A tilted axis of symmetry and a dipping interface in isotropic media produce similar amplitudes of both direct ( P ) and converted ( Ps ) phases, leaving the backazimuth variation of the P-Ps delay as the main discriminant. Seismic anisotropy with a tilted symmetry axis leads to complex synthetic seismograms in velocity models composed of just a few flat homogeneous layers. It is possible therefore to model observations of P coda with prominent transverse components with relatively simple 1-D velocity structures. Successful retrieval of salient model characteristics appears possible using multiple realizations of a genetic-algorithm (GA) inversion of P coda from several backazimuths. Using GA inversion, we determine that six P coda recorded at station ARU in central Russia are consistent with models that possess strong (> 10 per cent) anisotropy in the top 5 km and between 30 and 43 km depth. The symmetry axes are tilted, and appear aligned with the seismic anisotropy orientation in the mantle under ARU suggested by SKS splitting.  相似文献   

4.
Seismic anisotropy within the uppermost mantle of southern Germany   总被引:1,自引:0,他引:1  
This paper presents an updated interpretation of seismic anisotropy within the uppermost mantle of southern Germany. The dense network of reversed and crossing refraction profiles in this area made it possible to observe almost 900 traveltimes of the Pn phase that could be effectively used in a time-term analysis to determine horizontal velocity distribution immediately below the Moho. For 12 crossing profiles, amplitude ratios of the Pn phase compared to the dominant crustal phase were utilized to resolve azimuthally dependent velocity gradients with depth. A P -wave anisotropy of 3–4 per cent in a horizontal plane immediately below the Moho at a depth of 30 km, increasing to 11 per cent at a depth of 40 km, was determined. For the axis of the highest velocity of about 8.03 km s−1 at a depth of 30 km a direction of N31°F was obtained. The azimuthal dependence of the observed Pn amplitude is explained by an azimuth-dependent sub-Moho velocity gradient decreasing from 0.06 s−1 in the fast direction to 0 s−1 in the slow direction of horizontal P -wave velocity. From the seismic results in this study a petrological model suggesting a change of modal composition and percentage of oriented olivine with depth was derived.  相似文献   

5.
Summary. Seismic anisotropy within the upper mantle originates from the preferred orientation of highly anisotropic single crystals. The symmetry and magnitude of anisotropy depend upon: (1) the volume percentages of the minerals constituting the upper mantle, (2) the degree and symmetry of preferred orientation of each mineral and (3) the alignment of the minerals' crystallographic axes relative to one another. The nature of upper mantle anisotropy can be examined by studying mineral orientations within ultramafic rocks which were once part of the mantle. Petrofabric data for olivine and pyroxene have been used to obtain velocity anisotropy patterns over large regions of ultramafic rocks from the Samail ophiolite, Oman, the Troodos ophiolite, Cyprus, the Bay of Islands ophiolife, Newfoundland, the Twin Sisters ultramafic, Washington, USA, the Dun Mountain ophiolite, New Zealand, the Red Hills ophiolite, New Zealand and the Red Mountain ophiolite, New Zealand. The compressional wave anisotropy calculated for these massifs ranges from 3 to 8 per cent, in excellent agreement with observed seismic anisotropy in the upper continental and oceanic mantle. The symmetry varies from orthorhombic to axial, with the axial symmetry axis corresponding to the olivine a-axes maxima and subparallel to spreading directions in oceanic upper mantle. Pyroxene a -, b - and c -axes maxima generally parallel olivine b -, c - and a -axes, respectively, and anisotropy decreases with increasing pyroxene content. Shear-wave splitting is predicted for all propagation directions within the upper mantle. Symmetry is also orthorhombic or axial, with the minimum difference in velocity between the two shear-waves parallel to the maximum compressional wave velocity.  相似文献   

6.
Summary. Seismic anisotropy has been previously studied at depths usually not exceeding 100 or 150 km. In this paper we present a method of analysis of seismic records which is very sensitive to azimuthal anisotropy and is applicable at almost any depth range. The idea of the method is to detect and analyse the SH -component of the waves, converted from P to S in the mantle. The procedure of record processing includes frequency filtering, axis rotation, transformation of the record to a standard form, stacking the standardized SH -component records of many seismic events, and the harmonic analysis of amplitude as a function of the direction of wave propagation. When applied to the long-period records of NORSAR the procedure detected a converted wave with the properties implying the possibility of its propagation in a transversely isotropic medium with a horizontal axis of symmetry . Our preferred model postulates anisotropy of ∼ 1 per cent in a layer 50 km thick at the base of the upper mantle.  相似文献   

7.
Upper-mantle flow beneath French Polynesia from shear wave splitting   总被引:1,自引:0,他引:1  
Upper-mantle flow beneath the South Pacific is investigated by analysing shear wave splitting parameters at eight permanent long-period and broad-band seismic stations and 10 broad-band stations deployed in French Polynesia from 2001 to 2005 in the framework of the Polynesian Lithosphere and Upper Mantle Experiment (PLUME). Despite the small number of events and the rather poor backazimuthal coverage due to the geographical distribution of the natural seismicity, upper-mantle seismic anisotropy has been detected at all stations except at Tahiti where two permanent stations with 15 yr of data show an apparent isotropy. The median value of fast polarization azimuths (N67.5°W) is parallel to the present Pacific absolute plate motion direction in French Polynesia (APM: N67°W). This suggests that the observed SKS fast polarization directions result mainly from olivine crystal preferred orientations produced by deformation in the sublithospheric mantle due to viscous entrainment by the moving Pacific Plate and preserved in the lithosphere as the plate cools. However, analysis of individual measurements highlights variations of splitting parameters with event backazimuth that imply an actual upper-mantle structure more complex than a single anisotropic layer with horizontal fast axis. A forward approach shows that a two-layer structure of anisotropy beneath French Polynesia better explains the splitting observations than a single anisotropic layer. Second-order variations in the measurements may also indicate the presence of small-scale lateral heterogeneities. The influence of plumes or fracture zones within the studied area does not appear to dominate the large-scale anisotropy pattern but may explain these second-order splitting variations across the network.  相似文献   

8.
Large scale seismic anisotropy in the Earth's mantle is likely dynamically supported by the mantle's deformation; therefore, tomographic imaging of 3-D anisotropic mantle seismic velocity structure is an important tool to understand the dynamics of the mantle. While many previous studies have focused on special cases of symmetry of the elastic properties, it would be desirable for evaluation of dynamic models to allow more general axis orientation. In this study, we derive 3-D finite-frequency surface wave sensitivity kernels based on the Born approximation using a general expression for a hexagonal medium with an arbitrarily oriented symmetry axis. This results in kernels for two isotropic elastic coefficients, three coefficients that define the strength of anisotropy, and two angles that define the symmetry axis. The particular parametrization is chosen to allow for a physically meaningful method for reducing the number of parameters considered in an inversion, while allowing for straightforward integration with existing approaches for modelling body wave splitting intensity measurements. Example kernels calculated with this method reveal physical interpretations of how surface waveforms are affected by 3-D velocity perturbations, while also demonstrating the non-linearity of the problem as a function of symmetry axis orientation. The expressions are numerically validated using the spectral element method. While challenges remain in determining the best inversion scheme to appropriately handle the non-linearity, the approach derived here has great promise in allowing large scale models with resolution of both the strength and orientation of anisotropy.  相似文献   

9.
Summary. Reduced Pn travel times from the Archaean Pilbara Craton of north-west Australia show a strong correlation with azimuth, which could be used as evidence of anisotropy. However, the azimuthal correlation could also be explained by a southerly dip of between 1 and 2° on the crust–mantle boundary, although the models from several reversed seismic profiles across the craton suggest a smaller dip.
A time-term analysis of the Pn date yielded several models. The preferred solution, in which the dip on the crust–mantle boundary is similar to that in the models from the reversed profiles, has approximately 2 per cent anisotropy in the uppermost mantle, with the direction of maximum velocity 30° east of north. One possible cause of the anisotropy is that olivine crystals were aligned by syntectonic recrystallization and/or power law creep in the tensional environment caused at the base of the lithosphere by flexure during loading of the lithosphere by the strata of the Hamersley Basin which overlies the Pilbara Craton.
A seismic discontinuity occurs about 15 km below the crust–mantle boundary under the craton. A qualitative analysis of all available seismic data suggests that the velocity below the boundary is probably also anisotropic, with the direction of maximum velocity between north and 40° west of north. The direction of minimum velocity below the sub-Moho boundary correlates loosely with the direction of basement lineaments in the Proterozoic Capricorn Orogenic Belt to the south of the craton, suggesting that the anisotropy under the boundary may be younger than that immediately under the crust/mantle boundary. This is consistent with the notion that the Archaean lithosphere was thinner than the present lithosphere.  相似文献   

10.
Upper mantle shear structure of North America   总被引:5,自引:0,他引:5  
Summary. The waveforms and travel times of S and SS phases in the range 10°–60° have been used to derive upper mantle shear velocity structures for two distinct tectonic provinces in North America. Data from earthquakes on the East Pacific Rise recorded at stations in western North America were used to derive a tectonic upper mantle model. Events on the north-west coast of North America and earthquakes off the coast of Greenland provided the data to investigate the upper mantle under the Canadian shield. All branches from the triplications due to velocity jumps near 400 and 660 km were observed in both areas. Using synthetic seismograms to model these observations placed tight constraints on heterogeneity in the upper mantle and on the details of its structure. SS–S travel-time differences of 30 s along with consistent differences in waveforms between the two data sets require substantial heterogeneity to at least 350 km depth. Velocities in the upper 170 km of the shield are about 10 per cent higher than in the tectonic area. At 250 km depth the shield velocities are still greater by about 4.5 per cent and they gradually merge near 400 km. Below 400 km no evidence for heterogeneity was found. The two models both have first-order discontinuities of 4.5 per cent at 405 km and 7.5 per cent at 695 km. Both models also have lids with lower velocities beneath. In the western model the lid is very thin and of relatively low velocity. In the shield the lid is 170 km thick with very high elocity (4.78 km s-1); below it the velocity decreases to about 4.65 km s-1. Aside from these features the models are relatively smooth, the major difference between them being a larger gradient in the tectonic region from 200 to 400 km.  相似文献   

11.
We develop an approach that allows us to invert for the mantle velocity structure within a finely parametrized region as a perturbation with respect to a low-resolution, global tomographic model. We implement this technique to investigate the upper-mantle structure beneath Eurasia and present a new model of shear wave velocity, parametrized laterally using spherical splines with ∼2.9° spacing in Eurasia and ∼11.5° spacing elsewhere. The model is obtained from a combined data set of surface wave phase velocities, long-period waveforms and body-wave traveltimes. We identify many features as narrow as few hundred kilometres in diameter, such as subducting slabs in eastern Eurasia and slow-velocity anomalies beneath tectonically active regions. In contrast to regional studies in which these features have been identified, our model encompasses the structure of the entire Eurasian continent. Furthermore, including mantle- and body-wave waveforms helped us constrain structures at depths larger than 250 km, which are poorly resolved in earlier models. We find that up to +9 per cent faster-than-average anomalies within the uppermost ∼200 km of the mantle beneath cratons and some orogenic regions are separated by a sharp gradient zone from deeper, +1 to +2 per cent anomalies. We speculate that this gradient zone may represent a boundary separating the lithosphere from the continental root, which might be compositionally distinct from the overlying lithosphere and remain stable either due to its compositional buoyancy or due to higher viscosity compared with the suboceanic mantle. Our regional model of anisotropy is not significantly different from the global one.  相似文献   

12.
Summary. A novel method is proposed for retrieving the 3-D orientation of axes of symmetry of near-source anisotropy by a non-linear inversion of observed radiation patterns of seismic displacement spectra of Rayleigh waves.
If faulting is generated within an anisotropic source region, body force equivalents for the faulting are in general not a double couple but the sum of three orthogonal dipole forces (Kosevich; Kawasaki & Tanimoto). As a result of the third dipole force, radiation patterns of Rayleigh waves are deformed, the deformation amounting to several per cent of those for an isotropic source medium. The non-linear inversion is carried out to find the optimum fault plane solutions giving the minimum square residual between observed and theoretical radiation patterns in some period range. In order to remove effects of heterogeneity along propagation paths, a pair-event scheme is involved in the inversion, which denotes taking spectral amplitude ratios and differential phases of the seismic displacement spectra of the pair-events having close hypocentres and different fault plane solutions. The uniqueness of the fault plane solutions of the non-linear inversion is afforded a proof by the Monte-Carlo experiment.
The non-linear inversion is repeated for some possible types of symmetry of the near-source orthotropic anisotropy due to the preferred orientation of olivine crystals as mantle materials. Square residuals thus obtained are compared with each other to see which orientation gives the minimum.
The method is applied to pair-events which occurred in the anomalous mantle beneath the Mid-Atlantic Ridge. This leads to a discovery that one type of symmetry of the preferred orientations with a -, b - and c-axes aligned vertical, parallel to and perpendicular to the trend (N11E) of the ridge axis, respectively, is most likely existing in the anomalous mantle.  相似文献   

13.
The anisotropy of heterogeneity scale lengths in the lower mantle is investigated by modelling its effect on the high-frequency precursors of PKIKP scattered by the heterogeneities. Although models having either an isotropic or an anisotropic distribution of scale lengths can fit the observed coda shapes of short-period precursors, the frequency content of broad-band PKIKP precursors favours a dominantly isotropic distribution of scale lengths. Precursor coda shapes are consistent with 1 per cent fluctuations in P velocity in the wavenumber band 0.05–0.5  km−1 extending to 1000  km above the core–mantle boundary, and with a D" region open to circulation throughout the lower mantle. The level of excitation of PKIKP precursors observed in the frequency band 0.02–2  Hz requires a power spectrum of heterogeneity that is nearly white or slowly increasing with wavenumber. Anisotropy of scale lengths may exist in a D" layer having larger horizontal than vertical scale lengths and produce little or no detectable effects on PKIKP precursors for P -velocity perturbations as high as 3 per cent when averaged over a vertical scale of several kilometres, and much higher when averaged over scales of hundreds of metres or less.  相似文献   

14.
Rayleigh wave phase velocity maps in southern Africa are obtained at periods from 6 to 40 s using seismic ambient noise tomography applied to data from the Southern Africa Seismic Experiment (SASE) deployed between 1997 and 1999. These phase velocity maps are combined with those from 45 to 143 s period which were determined previously using a two-plane-wave method by Li & Burke. In the period range of overlap (25–40 s), the ambient noise and two-plane-wave methods yield similar phase velocity maps. Dispersion curves from 6 to 143 s period were used to estimate the 3-D shear wave structure of the crust and uppermost mantle on an 1°× 1° grid beneath southern Africa to a depth of about 100 km. Average shear wave velocity in the crust is found to vary from 3.6 km s–1 at 0–10 km depths to 3.86 km s–1 from 20 to 40 km, and velocity anomalies in these layers correlate with known tectonic features. Shear wave velocity in the lower crust is on average low in the Kaapvaal and Zimbabwe cratons and higher in the surrounding Proterozoic terranes, such as the Limpopo and the Namaqua-Natal belts, which suggests that the lower crust underlying the Archean cratons is probably less mafic than beneath the Proterozoic terranes. Crustal thickness estimates agree well with a previous receiver function study of Nair et al. . Archean crust is relatively thin and light and underlain by a fast uppermost mantle, whereas the Proterozoic crust is thick and dense with a slower underlying mantle. These observations are consistent with the southern African Archean cratons having been formed by the accretion of island arcs with the convective removal of the dense lower crust, if the foundering process became less vigorous in arc environments during the Proterozoic.  相似文献   

15.
Summary. Results from several recent studies suggest that there are lateral heterogeneities of up to a few per cent in the lowermost 150–200 km of the mantle (Bullen's D " region). Inferred anomaly sizes span the range from less than 50 km to greater than 1000 km.
In this study differences in the velocity structure among regions at the base of the mantle were inferred from an analysis of amplitude ratios of PKPAB and PKPDF for given earthquake-station pairs at distances greater than 155° (Sacks, Snoke & Beach). We distinguish two kinds of regions: A (anomalous) regions in which the mean, median and spread in AB/DF amplitude ratios are significantly higher (> 50 per cent) than for a reference radial earth model and N (normal) regions in which the distribution of the amplitude ratios is as expected.
The AB branch has near-grazing incidence to the core and therefore maximum sensitivity to velocity structure compared to the near-normal incident DF phases. Using an iterative, forward-modelling approach, we have determined general characteristics of the velocity structure for regions at the base of the mantle which can produce amplitude-ratio distributions similar to those for an A region. Agreement between model and data is obtained over the period range from 0.5 s to greater than 10 s using a laterally heterogeneous model for the D " region. the model consists of cells which are 200 km in lateral extent with velocity variations of up to ±1 per cent. This structure is modulated by a region-wide (1000km) perturbation which increases smoothly from zero at the edges of the region to a negative 1 per cent at the centre. Small cells (∼40 km) cannot produce anomalously large amplitude, long-period AB arrivals, and larger cells (∼1000km) cannot match the observed scatter. the ∼200 km scale anomalies could be small-scale convection cells confined to the D " region.  相似文献   

16.
Summary. The paper gives the results of a study of the anisotropy of seismic wave velocities within the Ashkhabad test field in Central Asia. The anisotropy was studied by analysing variations in the values of apparent velocities of first arrivals for epicentral distances ranging from 30 to 130 km and by analysing the delays (Δ ts1-s2 ) between the arrival times of shear waves with different polarizations.
The velocities of P -waves vary with azimuth from 5.3 to 6.27 km s-1 and the velocities of S -waves vary from 3.15 to 3.5 km s-1.
The delay times Δ tS1 - S2 depend on the direction of the propagation. The character of the variation of the propagation velocity of the longitudinal wave, the presence of two differently polarized shear waves S 1 and S 2 propagating at different velocities, and the character of the distribution of Δ tS1 - S2 on the stereogram suggest that the symmetry of the anisotropic medium is close to hexagonal with a nearly horizontal symmetry axis coinciding with the direction of maximal velocity. The azimuth of the symmetry axis of the medium is 140° and coincides with the direction of geological faults.  相似文献   

17.
Summary. Available seismic refraction data from three different continental areas, northern Britain and the eastern and western United States, has been studied for possible Pn , velocity anisotropy using the methods described by Bamford. There are various deficiencies in the time—distance data used in each case but, while the uppermost mantle beneath northern Britain and the eastern United States seems to be isotropic within the limits of measurement error, there is a small but significant anisotropy beneath the western United States.
Both the amount (up to 3 per cent) and the direction (70–80° east of north) of this anisotropy are very similar to the results obtained in the Pacific Ocean off California. We tentatively conclude that this anisotropy is present as a consequence of the subduction of oceanic lithosphere beneath the western United States.  相似文献   

18.
Shear wave splitting analyses have been carried out using teleseismic data from broad-band seismograph stations deployed at temporary and permanent locations in Dronning Maud Land (DML), Antarctica. In most cases, the observed anisotropy can be related to major tectonic events that formed the present-day Antarctic continent. We rule out an anisotropic contribution from recent asthenospheric flow. At the Russian base Novolazarevskaya near the coast in central DML, waveform inversion suggests a two-layer model where the fast direction of the upper layer is oriented parallel to Archean fabrics in the lithosphere, whereas the anisotropy of the lower layer is interpreted to have been created during the Jurassic Gondwana break-up. Recordings at the South African base Sanae IV, however, show enigmatic results. For narrow backazimuthal segments, splitting parameters show strong variations together with a multitude of isotropic measurements, indicative of complex scattering that cannot be explained by simple one- or two-layer anisotropic models. In the interior of the continent, the data are consistent with single-layer anisotropy, but show significant spatial variations in splitting parameters. A set of temporary stations across the Heimefront shear zone in western DML yield splitting directions that we interpret as frozen anisotropy from Proterozoic assembly of the craton. An abrupt change in fast axis direction appears to mark a suture between the Grunehogna craton, a fragment of the Kalahari–Kaapvaal craton in southern Africa and the Mesoproterozoic Maudheim Province.  相似文献   

19.
We present a 3-D radially anisotropic S velocity model of the whole mantle (SAW642AN), obtained using a large three component surface and body waveform data set and an iterative inversion for structure and source parameters based on Non-linear Asymptotic Coupling Theory (NACT). The model is parametrized in level 4 spherical splines, which have a spacing of ∼ 8°. The model shows a link between mantle flow and anisotropy in a variety of depth ranges. In the uppermost mantle, we confirm observations of regions with   VSH > VSV   starting at ∼80 km under oceanic regions and ∼200 km under stable continental lithosphere, suggesting horizontal flow beneath the lithosphere. We also observe a   VSV > VSH   signature at ∼150–300 km depth beneath major ridge systems with amplitude correlated with spreading rate for fast-spreading segments. In the transition zone (400–700 km depth), regions of subducted slab material are associated with   VSV > VSH   , while the ridge signal decreases. While the mid-mantle has lower amplitude anisotropy (<1 per cent), we also confirm the observation of radially symmetric   VSH > VSV   in the lowermost 300 km, which appears to be a robust conclusion, despite an error in our previous paper which has been corrected here. The 3-D deviations from this signature are associated with the large-scale low-velocity superplumes under the central Pacific and Africa, suggesting that   VSH > VSV   is generated in the predominant horizontal flow of a mechanical boundary layer, with a change in signature related to transition to upwelling at the superplumes.  相似文献   

20.
Upper Jurassic red sandstones and red siltstones were collected from 67 layers at 12 localities in the Penglaizhen formation. This formation is in the north of Bazhong county (31.8°N, 106.7°E) in the Sichuan basin, which is located in the northern part of the Yangtze craton. Thermal demagnetization isolated a high-temperature magnetic component with a maximum unblocking temperature of about 690 °C from 45 layers. The primary nature of the magnetization acquisition is ascertained through the presence of magnetostratigraphic sequences with normal and reversed polarities, as well as positive fold and reversal tests at the 95 per cent confidence level. The tilt-corrected mean direction of 36 layers is D = 20.0°, I = 28.8° with α 95 = 5.8°. A Late Jurassic palaeomagentic pole at 64.7°N, 236.0°E with A 95 = 7.0° is calculated from the palaeomagnetic directions of 11 localities. This pole position agrees with the two other Late Jurassic poles from the northern part of the Yangtze craton. A characteristic Late Jurassic pole is calculated from the three poles (68.6°N, 236.0°E with A 95 = 8.0°) for the northern part of the Yangtze craton. This pole position is significantly different from that for the southern part of the Yangtze craton. This suggests that the southern part of the Yangtze craton was subjected to southward extrusion by 1700 ± 1000  km with respect to the northern part. Intracraton deformation occurred within the Yangtze craton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号