首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
采用表面张力仪、界面黏弹性仪和Zeta电位仪,研究了大庆油田三元复合驱采出水中的固体颗粒(纳米SiO2、钠基蒙脱土)与驱油剂(碱、表面活性剂、聚合物)作用对油水界面性质及乳状液稳定性的影响。结果表明,固体颗粒与NaO H作用使得油滴表面Zeta电位绝对值增大;固体颗粒与烷基苯磺酸盐作用,油水界面张力增大,水相固体颗粒使得油水界面剪切黏度减小;固体颗粒与HPAM 作用使得油滴表面Zeta电位绝对值明显增大。固体颗粒与碱作用时,其低质量浓度不利于O/W乳状液的稳定,而高质量浓度(800 m g/L )则有利于O/W乳状液的稳定;固体颗粒与烷基苯磺酸盐作用使得O/W乳状液稳定性增加,而与H PA M作用则减小O/W乳状液的稳定性。  相似文献   

2.
用界面张力仪、表面粘弹性仪和Zeta 电位仪测定了胜利孤东原油模拟油与含预交联聚合物凝胶颗粒 溶液间的界面特性, 并研究了预交联聚合物凝胶颗粒浓度对这些界面特性及乳状液稳定性的影响。结果表明, 去离 子水中加入预交联聚合物凝胶颗粒后, 去离子水及模拟水与原油模拟油间的界面张力和界面剪切粘度及油滴表面 的Ze ta 电位绝对值均增大, 原油与预交联聚合物凝胶颗粒溶液间所形成的W/ O 型和O/W 型乳状液稳定性均随聚 合物凝胶颗粒浓度增加而增强。  相似文献   

3.
采出液的稳定性及处理效果与油水界面性质有关,三元复合驱弱碱与原油作用时间对油水界面性质及采出液稳定性有重要影响.以大庆原油模拟油、模拟水和Na2CO3溶液为研究对象,利用界面张力仪、表面黏弹性仪、Zeta电位分析仪及浊度仪,研究大庆油田三元复合驱弱碱与原油长期作用后对油水界面性质及乳状液稳定性的影响.结果表明:Na2CO3溶液与模拟油长时间反应后,分离得到的水相与模拟油间的界面张力降低,油珠表面的Zeta电位绝对值增加,油水界面剪切黏度变化不明显,水相与模拟油乳化后所形成的乳状液的稳定性增强.Na2CO3溶液与模拟油反应1d后,分离得到的油相与模拟水间的界面张力、Zeta电位及乳状液稳定性大于未反应的模拟油的;Na2CO3溶液与模拟油反应10d后,分离得到的油相与模拟水间的界面张力小于反应1d后分离所得的油相的,Zeta电位及乳状液稳定性大于反应1d后分离所得的油相的.该研究结果为三元复合驱机理研究提供参考.  相似文献   

4.
稠油O/W乳状液中多重乳滴对稳定性的影响   总被引:2,自引:0,他引:2  
对胜利油田新滩区块稠油乳化降粘研究结果表明:稠油在乳化降粘配制O/W乳状液时,会形成部分W/O/W多重乳滴,这种多重乳滴的多少和性质与配制O/W乳状液的方法有关.当用纯稠油与活性水配制时,形成的多重乳滴少,其主要是中间油相与外水相油水界面膜的破坏.它的破坏对整个乳状液稳定性影响小.而利用高内相W/O乳状液用转相法配制O/W乳状液时,会形成较多的W/O/W多重乳滴.这种乳滴的破坏对乳状液稳定性有很大影响.  相似文献   

5.
针对渤海BZ25-1s油田储层地质特征和流体性质,在不同实验方法条件下,以油水乳状液黏度、乳状液结构形态、分水率和界面张力为评价指标,开展了稠油表面活性剂乳化降黏效果及相关作用机理的实验研究。结果表明,当油水体积比低于7∶3和乳化药剂浓度高于600 mg/L时,强化分散体系可以与原油作用形成水包油型(O/W)乳状液,降黏率可达80%。相对于强化冷采体系,强化分散体系在破乳、降低界面张力及抗吸附方面均具有显著优势,其与原油乳化作用可以导致部分表面活性剂组分进入原油中,进而影响强化分散体系与原油间界面张力和乳化效果。强化分散体系能更大幅度降低注入压力、减缓含水率上升速度,并且能更有效地提高原油采收率。  相似文献   

6.
针对塔河稠油采出液,测定了稠油采出液的黏度、含油量、含水量等,并将其分离出沥青质、胶质和蜡组分,分别研究了这3种组分对油水界面张力和界面剪切黏度以及稠油乳状液稳定性的影响。研究发现,沥青质和胶质作为天然的乳化剂,能使油水界面张力明显降低,且油水界面剪切黏度大小顺序为:沥青质>胶质>蜡,说明沥青质能稳定油水界面膜。此外,将胶质加入模拟油与模拟水所形成的O/W 乳状液稳定性最强,其次是沥青质和蜡组分;而使模拟油与模拟水所形成的W/O 乳状液稳定性最强的是沥青质,其次是胶质,蜡组分最弱。  相似文献   

7.
以成分相对简单的轻质油(V(石油醚):V(苯)=9:1)作为模拟油取代成分复杂的原油配制模拟采出水,详细探究了驱油剂影响聚合物/表面活性剂二元复合驱采出水乳化稳定性的机理。采用超低界面张力仪、Zeta电位分析仪和界面流变仪对油水界面张力、油滴表面Zeta电位和油水界面流变进行测定,研究了部分水解聚丙烯酰胺(HPAM,聚合物)、石油磺酸盐(WPS,表面活性剂)和矿化度对模拟采出水油水分离性能的影响。研究结果表明:WPS能够降低油水界面张力,使模拟采出水更加稳定。HPAM能够增加模拟采出水体相黏度,但对其最终乳化稳定性影响较小。矿化度增加显著增强了模拟采出水乳化稳定性,从而为进一步加深对采出水乳化稳定性的研究提供借鉴。  相似文献   

8.
锂皂石颗粒对聚合物驱采出水乳化稳定性的影响   总被引:1,自引:1,他引:0  
研究了锂皂石颗粒对模拟聚合物驱采出水乳化稳定性能和油水界面性质的影响。通过分析含油量表征分析了锂皂石颗粒对聚合物驱采出水乳化稳定性的影响,发现在HPAM质量浓度为100~600mg/L、锂皂石颗粒质量浓度为50~100mg/L时,对聚合物驱采出水稳定性影响最大。研究了锂皂石颗粒对模拟聚驱采出水中油滴Zeta电位、油水界面张力、颗粒油滴聚集状态及乳化体系黏度的影响。结果表明:在实验浓度下,随锂皂石颗粒质量浓度增大,Zeta电位下降、界面张力降低、体系黏度提高,对采油污水稳定性影响显著;当锂皂石颗粒质量浓度大于100mg/L后,聚驱采出水稳定性减弱,此时有利于聚合物驱采出水的处理。  相似文献   

9.
利用带压溶气原油乳化装置在不同溶气环境(CO2、CH4、N2)下对长庆原油进行带压乳化,并通过溶解度测定装置、溶气原油乳液稳定性分析装置、界面张力仪、高压流变仪测得不同气体的溶解度Rs、分水率fv、界面张力γ、界面膜弹性模量εd、溶气原油黏度μ,溶气原油乳状液表观黏度μap。结果表明,油水界面膜的存在会在一定程度上抑制气体从外相向内相的迁移,使溶气原油乳状液的溶解度小于内外相各自的溶解度之和;在溶CO2的环境下,由于其油/水界面张力最小,使其乳化效果最好,形成的带压W/O型乳状液乳滴最为细密,同时由于其油水界面弹性模量最大,形成的带压乳液体系最为稳定,乳液体系较原油体系的增黏率最明显;与之相反,在溶N2的环境下,带压乳液体系的稳定性较差,易于破乳。  相似文献   

10.
通过室内实验方法研究了钠蒙脱土颗粒对聚驱采油污水油水分离性能和油水界面性质的影响。采用界面张力仪和Zeta电位仪研究了钠蒙脱土颗粒对聚驱采油污水中油滴Zeta电位、油水界面张力和界面扩张黏弹模量的影响。在光学显微镜下,观察钠蒙脱土颗粒在油滴表面的吸附状态。结果表明,当钠蒙脱土颗粒质量浓度低于200mg/L时,随其质量浓度增大、Zeta电位下降,、界面张力降低、黏弹模量提高,采油污水中出现稳定液滴型(oil-mineral aggregate,OMA)结构,此时钠蒙脱土颗粒对聚驱采油污水稳定性影响比较显著, 采油污水处于比较稳定的阶段。当其质量浓度大于250mg/L后,Zeta电位基本不再下降,而界面张力略有提高,黏弹模量也有增大,颗粒油滴形成大的聚集体结构,油滴更容易发生聚并,聚驱采油污水稳定性变差,从而更易于处理。  相似文献   

11.
使用硅烷偶联剂KH-550对纳米二氧化硅(Nano-SiO_2)进行表面有机改性。使用Zetasizer 3000电位仪,系统分析KH-550的用量、改性时间以及改性温度等因素对Nano-SiO_2表面ζ电位的影响,得到不同改性条件对Nano-SiO_2表面ζ电位的作用规律,从而建立改性Nano-SiO_2表面ζ电位与有机改性条件的关系。将改性前后的Nano-SiO_2与石油磺酸盐-PS复配,得到改性二氧化硅/表面活性剂(KH550-g-Nano-SiO_2-PS)复合体系。采用界面张力仪(TX-500c),系统研究该复合体系降低油/水界面张力能力,并利用Turbiscan Lab型乳状液稳定性分析仪,系统研究油/水乳状液的稳定性。结果表明,当石油磺酸盐表面活性剂质量分数为0.5%时,该体系油/水界面张力降低至2.30×10~(-2) mN/m,然而当KH550质量分数为5%时,KH550-g-Nano-SiO_2-PS体系能使油/水界面张力降低至5.42×10~(-3)mN/m,达到超低界面张力,且乳化液稳定性最大,此时KH550-g-Nano-SiO_2-PS体系表面ζ电位为-50.1mV,通过表面ζ电位的变化分析了油水界面张力变化及乳状液稳定机理。  相似文献   

12.
为进一步探究稠油乳化降黏剂的降黏增油机理, 针对渤海油藏地质特征和流体性质, 在完成降黏剂 筛选及相关性能评价后, 以黏度和采收率为评价指标, 开展了稠油乳化剂降黏增油效果及其影响因素实验研究。结 果表明, 3种降黏剂通过与原油作用形成水包油乳状液, 进而降低原油黏度, 其中降黏剂2乳化降黏效果最好。随乳 状液中水含量减小, 油水乳状液乳化类型逐渐从水包油型( O /W) 转变为油包水型( W/ O) , 油水乳化液黏度增加, 最 终超过原油黏度。随稠油油藏储层非均质性即窜流程度增加, 降黏剂增油效果变好。随原油黏度增大, 降黏剂增油 效果变差, 在使用类似降黏剂前可对储层原油进行降黏预处理, 从而增大原油采收率增幅。  相似文献   

13.
文章研究了锂皂石对聚合物/表面活性剂复合驱采出水乳化稳定性的影响,并通过油水界面张力和zeta电位分析了体系稳定的原因。结果表明:在驱油剂的浓度固定时,随着锂皂石质量浓度的增大,zeta电位和界面张力逐渐降低,采出水稳定性逐渐增强;当浓度达到150~200 mg/L时,体系最稳定,继续增大锂皂石的浓度,zeta电位基本无变化,而界面张力增加,此时采出水稳定性减弱。在锂皂石浓度一定时,随表面活性剂浓度增加,zeta电位和界面张力均减小,采出水稳定性增强;随聚合物浓度增大,采出水稳定性先增强后减弱。  相似文献   

14.
为进一步探究稠油乳化降黏剂的降黏增油机理,针对渤海油藏地质特征和流体性质,在完成降黏剂筛选及相关性能评价后,以黏度和采收率为评价指标,开展了稠油乳化剂降黏增油效果及其影响因素实验研究。结果表明,3种降黏剂通过与原油作用形成水包油乳状液,进而降低原油黏度,其中降黏剂2乳化降黏效果最好。随乳状液中水含量减小,油水乳状液乳化类型逐渐从水包油型(O/W)转变为油包水型(W/O),油水乳化液黏度增加,最终超过原油黏度。随稠油油藏储层非均质性即窜流程度增加,降黏剂增油效果变好。随原油黏度增大,降黏剂增油效果变差,在使用类似降黏剂前可对储层原油进行降黏预处理,从而增大原油采收率增幅。  相似文献   

15.
通过剪切乳化制备了高盐条件下甜菜碱两亲聚合物乳状液;利用稳定性分析仪和激光粒度仪分析了NaCl质量分数对甜菜碱两亲聚合物乳状液体系稳定性的影响;采用流变仪对其影响机理进行了探讨。研究表明,在高盐条件下,甜菜碱两亲聚合物能够形成相对稳定的O/W型乳状液。NaCl质量分数越高,油滴平均粒径变小且分布变窄,分散介质的黏度增大,界面强度增强,导致该乳状液体系的稳定性提高。  相似文献   

16.
研究了驱油剂对模拟三元复合驱采出水油水分离性能、油滴Zeta电位、界面张力、流变性及油滴粒径的影响。HPAM提高体相粘度和油滴Zeta电位,促进油滴聚并,对界面张力和粘弹性模量影响不大,随着其浓度的提高,模拟采出水的稳定性先减小后增强;表面活性剂提高Zeta电位,减小界面张力和粘弹性模量,并阻碍油滴聚并,随着其含量的增加,稳定性显著增强;碱提高Zeta电位,减小界面张力和粘弹性模量,随着其含量的增加,稳定性先增强后减弱。  相似文献   

17.
不饱和聚酯树脂在碱性化合物的作用下可与水形成油包水型(W/O型)乳状液,交联后形成含水的不饱和聚酯树脂.本文研究了形成稳定的W/O型乳状液的条件,对影响乳状液稳定性的各因素包括树脂型号、乳化剂种类及浓度、含水量、制备条件及温度等进行了考察,获得形成稳定的W/O型乳状液的条件,探讨了乳状液的稳定机理.  相似文献   

18.
为了探究不同类型阴⁃非离子表面活性剂对稠油乳化的影响,获得其构效关系,针对某油田某稠油区块原油,选择了6种单体型阴⁃非离子表面活性剂C14E3C、C14E5C、C14E7C、C14E9C、C16E3C、C18E3C,两种Gemini型阴⁃非离子表面活性剂OP4、OP15,利用旋转滴界面张力仪和稳定性分析仪,考察了表面活性剂质量分数、油水质量比以及聚合物对油水界面张力、原油乳状液粒径、稳定性等的影响规律。结果表明,单体型随着氧乙烯(EO)基团的增加,乳状液的稳定性变化不大,而烷基链的增长会小幅度增加乳状液的稳定性。对于Gemini型阴⁃非离子表面活性剂,EO基团个数的增加会小幅度增加乳状液的稳定性。单体型相较于Gemini型有较小的分子尺寸,界面张力稳态值普遍偏低。同时,聚合物的加入会提高乳状液的稳定性。  相似文献   

19.
明确含蜡W/O(油包水型乳状液)体系水合物成核特性是保障深海油气开采及集输管道安全的关键,水合物生成诱导期是描述成核特性的基础参数.基于反应釜中含蜡及不含蜡W/O体系水合物生成诱导期实验,首先定义实验体系诱导期为体系达到相平衡温度时刻与观测到升温峰时刻间的时间间隔;其次发现含蜡体系诱导期显著长于不含蜡体系的诱导期,且随着W/O体系含蜡量增加,诱导期延长.根据蜡晶油水界面吸附理论以及水合物界面成核特性,认为油水界面吸附的蜡晶将增加成核的传质阻力,延长诱导期.与气-水体系相比,W/O体系水合物成核除了受到本征驱动力驱动,还受到异相成核作用以及传质作用等的影响.最后,基于上述机理,首次建立了反应釜中考虑蜡晶对传质影响的W/O体系水合物诱导期模型,预测相对误差小于15%.  相似文献   

20.
以部分水解聚丙烯酰胺为例,考察聚合物对石油磺酸盐油/水体系的动态及平衡界面张力的影响,验证了在该体系中加入一定浓度范围内的聚合物只改变该体系界面张力达到平衡所需要的时间和变化过程,不影响该体系的洗油能力.改变聚合物和石油磺酸盐驱油体系注入顺序和方式的室内模拟驱油和驱替吸附实验表明,聚合物驱后再进行石油磺酸盐驱油体系可获得更高的驱油效率.通过动态吸附实验分析其原因在于滞留的聚合物通过氢键作用在岩石表面的吸附减少了岩石表面可吸附石油磺酸盐的吸附位,石油磺酸盐在地层表面的吸附损失减少;比较聚合物及石油磺酸盐的混溶体系,残留聚合物与石油磺酸盐通过疏水缔合作用所形成的缔合体数量较少,均相对增加了石油磺酸盐可吸附于油水界面上的分子数量,从而获得较高的驱油效率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号