首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过以甲基烯丙基聚氧乙烯醚(TPEG),丙烯酸(AA)为主要原料合成缓释型聚羧酸减水剂,研究了反应温度、反应时间、酸醚比,以及2-丙烯酰胺-2-甲基丙磺酸(AMPS)、丙烯酰胺(AM)和不同引发剂的用量等因素对缓释型聚羧酸减水剂性能的影响.结果表明,缓释型聚羧酸减水剂最佳合成工艺为:n (AA)∶n (AMPS)∶n (AM)∶n (TPEG) =3.25:0.27:0.40:1.00,引发剂用量为TPEG总质量的0.25%,反应温度为70℃,滴加反应时间为4h.所合成的缓释型聚羧酸减水剂,在水灰比为0.29,掺量为0.4%的条件下,水泥初始净浆流动度达280 mm,净浆流动度损失较小,混凝土坍落度损失小,1h几乎无损失,2h损失30 mm,与其它缓释型聚羧酸减水剂相比具有更好的缓释效果.  相似文献   

2.
以甲基烯丙基聚氧乙烯醚(TPEG)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)、丙烯酸(AA)为主要原料合成了聚羧酸系减水剂。通过正交实验研究了单体配比、引发剂用量等因素对聚羧酸系减水剂分散性能的影响。结果表明,最佳单体配比为:n(AA)∶n(TPEG)∶n(AMPS)=3∶1∶0.15,引发剂过硫酸铵(APS)用量为TPEG质量的0.25%。在最佳配比条件下,考察了反应时间和反应温度对聚羧酸系减水剂性能的影响。在70℃下反应5 h,减水剂对硬石膏的分散性能最佳,硬石膏的初始和2 h的净浆流动度分别为263 mm和255mm,表现出较好的缓凝效果。  相似文献   

3.
以甲基烯丙基聚氧乙烯醚(TPEG)、丙烯酸(AA)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)、丙烯酰胺(AM)等作为合成的主要原材料,按n(AA)∶n(AMPS)∶n(AM)∶n(TPEG)=(3.5~2.0)∶0.3∶0.3∶1.0,选取酸醚比[n(AA)∶n(TPEG)]为3.5、2.75、2.0,催化剂用量为大单体质量的0.05%、0.10%、0.15%,在不同温度下合成缓释型聚羧酸系减水剂。通过测试水泥净浆经时流动度,确定不同合成温度下最佳的酸醚比和催化剂用量。并对按最佳配比合成的减水剂进行性能试验研究,结果表明,采用适当的合成工艺,常温和高温条件下合成的缓释型聚羧酸减水剂的性能基本相同。  相似文献   

4.
以聚醚大单体(TPEG)、丙烯酸(AA)、2-丙烯酰胺-2-甲基丙烷磺酸(AMPS)为主要原料合成了适用于硫铝酸盐水泥的聚羧酸系减水剂。通过正交试验研究了单体配比、聚醚大单体侧链分子质量等因素对聚羧酸减水剂分散性能的影响。结果表明,当n(AA)∶n(AMPS)∶n(TPEG)=3.25∶1.5∶2.0,聚醚单体侧链相对分子质量为3000时,合成减水剂的分散性能较好。在此条件下,当反应温度为75℃时,聚羧酸减水剂的分散效果最佳,且浆体没有发生离析分层现象。  相似文献   

5.
通过丙烯酸(AA)、异戊烯基聚氧乙烯醚(TPEG)和甲基丙烯酰氧丙基三甲氧基硅烷(KH-570)的水溶液自由基共聚合成硅烷改性聚羧酸减水剂PCE-1。研究了单体比例、聚合工艺对减水剂分散性的影响。结果表明,该减水剂的最佳制备工艺为:n(AA)∶n(KH-570)∶n(TPEG)=4.5∶1∶1,链转移剂用量为单体总物质的量的3%,聚合温度为45℃。在此条件下合成的减水剂相对无硅烷改性的聚羧酸减水剂PCE-2对水泥颗粒具有更强的吸附能力,因而分散性明显提高,可显著降低砂浆黏度。掺PCE-1的混凝土2 h扩展度比掺PCE-2的大80 mm,初始和2 h的排空时间分别缩短3.8 s和13.7 s。  相似文献   

6.
以甲基烯丙基聚氧乙烯醚(TPEG)、丙烯酸羟乙酯(HEA)、丙烯酸(AA)、钙离子螯合单体(GMA-IDA)等为合成主要原料,经自由基聚合制备了新型缓释型聚羧酸减水剂(RPE)。采用红外光谱对合成减水剂的分子结构进行表征,对合成产品进行了水泥净浆经时流动度测试,结果表明,TPEG、HEA、AA和GMA-IDA聚合顺利进行,合成产物为目标产物;当GMA-IDA替代TPEG质量的10%时,RPE的分散性及分散保持性显著提高,表现出缓释性能和较好的保坍性。  相似文献   

7.
以异戊烯醇聚氧乙烯醚(TPEG2400)、丙烯酸(AA)和甲基丙烯酰氧乙基三甲基氯化铵(DMC)为单体,过氧化氢(H2O2)/抗坏血酸(Vc)为引发剂,3-巯基丙酸(3-MPA)为链转移剂,合成了两性聚羧酸减水剂。以水泥净浆流动度为评价指标,确定最优单体摩尔比为n(TPEG2400)∶n(AA)∶n(DMC)=1.0∶3.2∶0.3。测试结果表明,当水灰比为0.29、两性聚羧酸减水剂折固掺量为水泥质量的0.13%时,水泥净浆初始流动度为275 mm,60 min流动度为245 mm,具有较好的分散性和分散保持性。当水泥中膨润土含量达2%,减水剂折固掺量为0.13%时,APC2具有较好的抗泥性,且具有良好的分散保持性能。  相似文献   

8.
以异戊烯醇聚氧乙烯醚(TPEG)和丙烯酸(AA)为主要聚合单体,选用丙烯酰胺(AM)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)和N-羟甲基丙烯酰胺(HAM)3种含酰胺基团的早强功能单体,在双氧水-抗坏血酸氧化还原引发体系和巯基乙酸链转移剂条件下制备了早强型聚羧酸减水剂。性能测试及红外光谱分析结果表明:当n(TPEG)∶n(AA)∶n(HAM)=1.0∶3.6∶0.4时,制备的减水剂早强效果优异,该减水剂折固掺量为0.2%时,与掺普通型聚羧酸减水剂的胶砂强度相比,其1 d、3 d抗压强度分别提高了15.35%、8.83%;酰胺官能团红外特征峰明显,表明早强型聚羧酸减水剂分子主链上含有酰胺基团。  相似文献   

9.
采用本体聚合工艺,以异戊烯醇聚氧乙烯醚(TPEG)、丙烯酸(AA)和丙烯酸羟乙酯(HEA)为原料,偶氮二异丁腈(AIBN)为引发剂,研究了本体聚合工艺中反应温度、引发剂投料方式、引发剂用量、单体摩尔比和单体滴加时间对制备固体缓释聚羧酸减水剂分子结构及性能的影响。结果表明:随着反应温度的升高,制备的固体缓释型聚羧酸减水剂转化率略有提高,初始分散性逐渐降低,在80℃时缓释效果最佳;AINB用量为0.4%,采用滴加工艺,单体摩尔比为:n(AA)∶n(HEA)∶n(TPEG)=2.0∶2.5∶1.0,AA和HEA分别滴加3 h,所制备的减水剂分散性能最好。  相似文献   

10.
以乙醇胺与磷酸进行酯化反应制得乙醇胺磷酸酯,再与马来酸酐进行开环反应制得磷酸酯改性单体MA-POE,并进一步与丙烯酸(AA)及异戊烯基聚氧乙烯醚(TPEG)进行水溶液自由基共聚合成磷酸酯基团改性聚羧酸减水剂。考察了AA、磷酸酯单体及TPEG三者比例、引发剂用量、催化剂用量等对减水剂分散性的影响,并与市售普通聚羧酸减水剂的抗高岭土性能进行了对比。结果表明,当n(AA)∶n(磷酸单体)∶n(TPEG)=4∶1∶1,双氧水用量为单体总物质的量的4%,n(抗坏血酸)∶n(双氧水)=0.50时,合成的减水剂分散及分散保持性能较优,对高岭土的敏感性优于市售减水剂,这主要源于其对高岭土的吸附作用更小。  相似文献   

11.
对于聚羧酸减水剂的合成,本文研究了合成工艺对于聚羧酸减水剂性能的影响,并且得到分散性能优异的减水剂合成配方和生产工艺过程,而且研究了市场上所关注的高性能减水剂与水泥的复合性能。本研究是以甲基烯丙基聚氧乙烯醚(又称改性聚醚—TPEG)、丙烯酸(AA)为原料,以5%的双氧水(H2O2)为引发剂,采用原位聚合与接枝的合成方法合成聚羧酸系减水剂。以水泥净浆流动度来进行实验对比,通过调整方案,确定合成聚羧酸减水剂的较优方案:n(TPEG):n(AA)=1:3.27,双氧水掺量为2.0%。最佳合成工艺的反应条件,反应温度为60℃,反应时间为4h~5h。合成的聚羧酸减水剂在低掺量(2.0%,固含量为10%),初始水泥净浆流动度为302mm,30min后298mm。最佳的条件下合成的聚羧酸减水剂水溶液的固含量为40.32%,pH值为7.3。  相似文献   

12.
以甲氧基聚乙二醇甲基丙烯酸酯(MPEGMA)、丙烯酸(AA)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)和丙烯酸甲酯(MA)为原料,在过硫酸铵(APS)引发下合成四元聚羧酸减水剂.通过单因素及正交试验结果表明,聚羧酸减水剂的最优合成条件为:反应温度85℃,反应时间8 h,APS用量为单体总质量的0.7%,n(AMPS):n(MPEGMA):n(MA):n(AA)=17:8:6:69.合成的减水剂掺量为0.6%,水灰比为0.3时,水泥净浆初始流动度达302 mm,2 h内水泥净浆流动度基本无损失.减水剂的数均分子质量以50 000~55 000较适宜.  相似文献   

13.
通过马来酸酐与聚乙二醇的酯化反应,合成了马来酸双酯交联剂。以甲基烯丙基聚氧乙烯醚(TPEG)、丙烯酸(AA)、丙烯酸羟乙酯(HEA)、交联剂聚乙二醇双马来酸单酯为原料,合成了缓释型聚羧酸减水剂。通过红外光谱对聚乙二醇双马来酸单酯及聚醚型聚羧酸减水剂结构进行了表征。随着交联剂PEGDMA200、PEGDMA400的用量的增加,净浆流动度先增大后降低,在用量为0.2 g时达到最高值;交联剂PEGDMA600随着用量的增加,稍微下降后逐渐增大,当加大到0.4 g时,净浆流动度基本不变化。CLPC400和CLPC600在减水剂折固掺量为0.16%时,具有很好的缓释作用。  相似文献   

14.
以丙烯酸、501醚类单体和缓释单体A为主要原料,在本体聚合条件下,采用偶氮二异丁腈(AIBN)为引发剂合成一种固态缓释型聚羧酸减水剂。研究了温度、酸醚比、引发剂和链转移剂用量对减水剂性能的影响并分析了原因。结果表明,当反应温度为70℃,引发剂用量为大单体质量的0.5%,链转移剂用量为大单体质量的0.4%,n(TPEG)∶n(AA)∶n(缓释单体A)=1.0∶3.5∶2.5时,所制备的固态缓释型聚羧酸减水剂性能最佳,其性能与市售缓释型减水剂B相当。GPC分析结果表明,合成产物中大单体转化率高,产物均一。  相似文献   

15.
以异戊烯醇聚氧乙烯醚(TPEG2400)、2-丙烯酰胺-2-甲基丙磺酸(AMPS)、马来酸酐(MA)、过硫酸铵(APS)为原料,合成了改性聚醚型聚羧酸减水剂,然后测定其流动性能。结果表明,聚醚型聚羧酸减水剂的最佳合成参数为反应单体摩尔比TPEG∶MA∶AMPS=1∶2∶3,引发剂用量为单体质量的4%,固含量为30%,反应时间为5 h,反应温度为80℃;当折固掺量为0.1%减水剂,水灰比为0.35时,水泥的净浆流动度可以达312 mm。由于将MA、AMPS和TPEG聚合,TPEG中存在醚键提供了较厚的亲水性立体保护膜,使得水泥粒子有稳定的分散性,故合成的聚醚型聚羧酸减水剂具有优良的性能。  相似文献   

16.
木质素磺酸盐改性聚羧酸减水剂的合成   总被引:1,自引:0,他引:1  
采用自由基共聚法,将大单体聚乙二醇单甲醚甲基丙烯酸酯(MPA)、木质素磺酸钠(LS)、丙烯酸(AA)和甲基丙烯磺酸钠(MAS)4种单体进行共聚,合成木质素磺酸盐改性聚羧酸减水剂。在n(AA)∶n(MPA)∶n(MAS)=5.0∶1.0∶1.0,引发剂用量为2.5%,LS用量为9%,反应温度80℃和反应时间为5 h的条件下合成的减水剂,掺量为0.2%、水灰比为0.29时,掺减水剂水泥净浆初始流动度达290 mm、30 min经时流动度为285 mm,流动度保持性良好。减水剂PC-LS掺量为0.4%时,砂浆的减水率达30%。  相似文献   

17.
从降低反应温度(20~25℃)入手,以异戊烯醇聚氧乙烯醚、丙烯酸、丙烯酸羟乙酯等为原料,借助复合引发剂(H_2C_2O_4/K_2MnO_4)降低反应温度,通过自由基共聚反应合成保坍型聚羧酸减水剂。试验结果表明,该减水剂的最佳工艺条件为:反应温度25℃,n(HEA)∶n(AA)∶n(TPEG)=0.07∶4.0∶1.0,引发剂E用量0.17%,反应时间2 h。可为低温合成技术提供一定的理论基础。  相似文献   

18.
蔗糖酯改性聚羧酸减水剂的合成   总被引:2,自引:1,他引:1  
以自制丙烯酸蔗糖酯(ASE)、自制丙烯酸聚乙二醇单甲醚酯(MPA)、丙烯酸(AA)、甲基丙烯磺酸钠(MAS)为原料,以过硫酸铵(APS)为引发剂,采用水溶液共聚法合成聚羧酸系减水剂。研究了反应过程中单体物质的量比、引发剂用量、蔗糖酯含量对聚羧酸系减水剂性能的影响,在n(AA)∶n(MPA)∶n(MAS)∶n(ASE)=3.5∶1.0∶1.0∶0.3,引发剂用量为2.5%,ASE含量为7.8%(质量比)时合成的改性聚羧酸减水剂性能最好,其折固掺量为0.2%,水灰比为0.29时,水泥净浆流动度达303 mm。  相似文献   

19.
采用氧化还原引发体系,以异戊烯醇聚氧乙烯醚(TPEG)、丙烯酸(AA)和丙烯腈(AN)为单体,合成了氰基改性聚羧酸减水剂,其最佳合成条件为:n(AA)∶n(TPEG)=4∶1,n(氧化剂)∶n(还原剂)=4∶1,AN对AA的摩尔替代量为7%,巯基乙酸用量为单体总质量分数的0.4%,反应温度为45℃,巯基乙酸和还原剂混合溶液滴加时间为1.5 h,保温时间为2 h。相比于未改性的聚羧酸减水剂(PCA1),改性后的聚羧酸减水剂(PCA2)减水率提高2.2~4.6个百分点,硬化混凝土各龄期强度增长更好。  相似文献   

20.
以二乙烯三胺和顺丁烯二酸酐为原材料经酯化反应制备酰胺亚胺功能单体(AMIDE),将其与异戊烯基聚氧乙烯醚大单体(TPEG)和不饱和酸丙烯酸(AA)共聚合成一种酰胺亚胺型聚羧酸系减水剂(AMIDE-PCE)。考察了TPEG分子、AA、AMIDE、引发剂H_2O_2、还原剂VC和链转移剂用量对产品性能的影响。确定了合成产品最佳的配比为:n(TPEG3000)∶n(AA)∶n(AMIDE)=1.0∶3.5∶1.0,H_2O_2和链转移剂用量分别为单体总质量的1.5%和1.8%,m(VC)∶m(H_2O_2)=0.5∶1.0。与市售聚醚型聚羧酸系减水剂(e-PCE)相比,AMIDE-PCE具有优异的分散性、明显的缓凝和增强效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号