首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The present study was designed to further investigate the nature of feeding induced by opioid stimulation of the nucleus accumbens through an examination of the effects of intra-accumbens (ACB) opioids on macronutrient selection. In 3-hr tests of free-feeding (satiated) rats, intra-ACB administration of the mu receptor agonist D-Ala2,N,Me-Phe4, Gly-ol5-enkephalin (DAMGO; 0, 0.025, 0.25 and 2.5 micrograms bilaterally) markedly enhanced the intake of fat or carbohydrate when the diets were presented individually (although the effect on fat intake was much greater in magnitude). Intra-ACB injections of DAMGO, however, produced potent preferential stimulatory effects on fat ingestion with no effect on carbohydrate ingestion when both fat and carbohydrate diets were present simultaneously. Moreover, this selective stimulation of fat intake was independent of base-line diet preference and could be blocked by systemic injection of naltrexone (5 mg/kg). We also examined the effect of 24-hr food deprivation on the pattern of macronutrient intake in rats with access to both carbohydrate and fat. In contrast to the DAMGO-induced selective enhancement of fat intake, food deprivation significantly increased the intake of both diets to the same extent; however, in this case, only the stimulated fat intake was blocked by systemic naltrexone. Intra-ACB administration of DAMGO in hungry rats produced an effect similar to that observed in free-feeding rats; preference was strongly shifted to fat intake. Similarly, the opioid antagonist naltrexone (20 micrograms) infused directly into ACB preferentially decreased fat intake in hungry rats. These findings suggest that endogenous opioids within the ventral striatum may participate in the mechanisms governing preferences for highly palatable foods, especially those rich in fat.  相似文献   

2.
Neuropeptide Y (NPY) is a potent central appetite stimulant found in hypothalamic neurons that have close anatomical associations with neurons containing serotonin, a powerful anorectic agent. To determine whether the two neurotransmitters interact functionally, we have studied the effects on regional hypothalamic NPY concentrations of acute and chronic administration of methysergide, a 5-HT1BC/serotonin receptor antagonist. Chronic methysergide treatment (10 mg/kg/day) was given by subcutaneously implanted osmotic minipumps (n = 8). Acute effects of methysergide were determined 4 h after a single injection (10 mg/kg) in a separate group (n = 8). Controls (n = 8) had implanted minipumps delivering saline, and also received a saline injection 4 h before sacrifice. Food intake was significantly increased (p < 0.01) by both acute and chronic methysergide treatment. In the chronically treated rats, NPY levels were significantly increased over controls in the arcuate nucleus (ARC; by 41%, p = 0.02) and paraventricular nucleus (PVN; by 40%, p < 0.01). Acute methysergide treatment also increased NPY concentrations in the ARC (by 81%, p < 0.01) and PVN (by 30%, p < 0.01). Methysergide administration, which stimulated feeding, therefore raised NPY concentrations in the ARC, where NPY is synthesized, and in the PVN, a major site of NPY release where NPY injection induces hyperphagia. These findings suggest that NPYergic and serotoninergic innervations in the hypothalamus interact to regulate food intake, and raise the possibility that increased NPY release may mediate the hyperphagic effect of serotoninergic 5-HT1BC/receptor blockade.  相似文献   

3.
Substantial evidence suggests that pharmacological manipulations of neural serotonin pathways influence ingestive behaviors. Despite the known role of the nucleus accumbens in directing appetitive and consummatory behavior, there has been little examination of the influences that serotonin receptors may play in modulating feeding within nucleus accumbens circuitry. In these experiments, the authors examined the effects of bilateral nucleus accumbens infusions of the 5-HT1/7 receptor agonist 5-CT (at 0.0, 0.5, 1.0, or 4.0 μg/0.5 μl/side), the 5-HT? receptor agonist EMD 386088 (at 0.0, 1.0, and 4.0 μg/0.5 μl/side), or the 5-HT2C preferential agonist RO 60–0175 (at 0.0, 2.0, or 5.0 μg/0.5 μl/side) on food intake and locomotor activity in the rat. Intra-accumbens infusions of 5-CT caused a dose-dependent reduction of food intake and rearing behavior, both in food-restricted animals given 2-hr free access to Purina Protab RMH 3000 Chow, as well as in nondeprived rats offered 2-hr access to a highly palatable fat/sucrose diet. In contrast, stimulation of 5-HT? receptors with EMD 386088 caused a dose-dependent increase of intake under both feeding conditions, without affecting measures of locomotion. Infusions of the moderately selective 5-HT2C receptor agonist RO 60–0175 had no effects on feeding or locomotor measures in food-restricted animals, but did reduce intake of the fat/sucrose in nonrestricted animals at the 2.0 μg, but not the 5.0 μg dose. Intra-accumbens infusions of selective antagonists for the 5-HT? (SB 269970), 5-HT? (SB 252585), and 5-HT2C (RS 102221) receptors did not affect locomotion, and demonstrated no lasting changes in feeding for any of the groups tested. These data are the first to suggest that the activation of different serotonin receptor subtypes within the feeding circuitry of the medial nucleus accumbens differentially influence consummatory behavior. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

4.
To characterize the anorectic effect of apolipoprotein A-IV (apo A-IV), we examined the effect of apo A-IV on the patterns of feeding, drinking and ambulation of rats fed ad libitum. A single dose of 200, 135 or 60 micrograms was infused intravenously through a chronically indwelling right atrial catheter just before the dark period. Apo A-IV suppressed food intake by decreasing meal size, but did not affect the interval between meals, the speed of eating, or the latency to eat the first meal after infusion. The anorectic effect of apo A-IV was dose-dependent and was effective for about 3 h after the infusion. The anorectic effect of apo A-IV is specific because inactivation of apo A-IV abolishes its anorectic effect. The anorectic effect of apo A-IV is not shared by apo A-I. Apo A-IV had no effect on drinking behavior or ambulatory activity. The results seem to indicate that apo A-IV specifically decreases the meal size, which supports our hypothesis that apo A-IV may act as a physiological signal for satiation after the ingestion of a lipid meal.  相似文献   

5.
Pharmacological manipulation leading to altered 5-HT function has been widely demonstrated to reduce ethanol intake in free choice tests. The aim of the present study was to examine the effects of a range of compounds known to influence 5-HT neurotransmission, including selective 5-HT receptor agonists and antagonists, on ethanol ingestion and maintained behaviour in an operant self-administration paradigm. Female Sprague-Dawley rats were trained to respond for 8% ethanol (v/v) in a 60-min test by a previously described technique. The number of responses and ethanol reinforcers (dipper deliveries), ethanol consumption (g/kg of body weight), and locomotor activity (LMA) were measured following administration of 5-HT agonists (5-HT, d-fenfluramine, fluoxetine, buspirone, TFMPP, and DOI) and antagonists (metergoline, ritanserin, and ondansetron) 30 min prior to testing. d-Fenfluramine, fluoxetine, buspirone, TFMPP, and DOI all produced a reduction in ethanol ingestion and maintained behaviour at doses that failed to reduce LMA. Conversely, metergoline and ritanserin only reduced ethanol self-administration at doses that concomitantly reduced LMA. 5-HT and ondansetron were without effect on any measure. These results demonstrate that, under the present experimental conditions, activation of central 5-HT1A, 5-HT1B, and 5-HT2 receptors reduced ethanol intake and reinforced behaviour in an operant paradigm.  相似文献   

6.
The selective 5-HT1B agonist CP-94,253 (3- (1,2,5,6-tetrahydro-4-pyridyl)-5-propoxypyrrolo[3, 2-b] pyridine) (5-40 mumol/kg) reduced the intake of both pellets and a 10% solution of sucrose (ID50 = 12.5 and 22.8 mumol/kg, respectively) in mildly deprived rats. Time-sampled observations revealed that CP-94,253 terminated feeding earlier, without disrupting the continuity of feeding. CP-94,253 increased standing but did not promote resting during satiation. Microstructural analysis of licking indicated that CP-94,253 decreased the frequency, but not the size, of bursts and clusters of licks without altering oral motor efficiency. The peripherally acting 5-HT1B agonist, CP-93,129 (3-(1,2,5,6-tetrahydropyrid-4-yl)pyrrolo[3,2-b]pyrid-5-one) had no effect on food intake. These results imply that CP-94,253 probes a role for central 5-HT1B receptors in the regulation of meal size and duration, but that recruitment of other 5-HT receptor subtypes may be needed for the full expression of satiety.  相似文献   

7.
The pentapeptide enterostatin (ENT) inhibits feeding after injection into the cerebral ventricles. To localize the central sites of action of ENT, the peptide (0.01 to 3.3 nM) was microinjected into several brain regions and the intake of a high fat diet was measured. The results show that ENT injection in the paraventricular nucleus (PVN) or the amygdala (AMYG) produced a bi-phasic dose related feeding response, low doses of ENT inhibited feeding while higher dose had no effect. The effective dose to inhibit feeding in the AMYG was 10 fold lower than that in the PVN. No changes in food intake were observed after ENT injection into the ventromedial hypothalamus and nucleus tractus solitarius. The data provide further support that there are targets in the CNS for ENT and suggest that central ENT function is site specific.  相似文献   

8.
1. The effects of mesulergine, a 5-hydroxytryptamine (5-HT) receptor antagonist with dopamine (DA) agonistic properties, on rats diet selection over a seven day period and on 5-HT and DA turnover was studied. 2. Three groups of male Wistar rats were individually caged and ad libitum fed with a standard (SD) and 50% sweet carbohydrate enriched diet (CED). Food intake was measured daily 4 hrs and 24 hrs after i.p. injections of mesulergine (1 and 3 mg/kg) or vehicle. 5-HT and 5-HIAA in hypothalamus (Hy), Striatum (St) and hippocampus (Hi) as well as DA and DOPAC in (Hy) and (St) were assayed at the 8th day of the experiment. 3. There was a dose dependent increase of SD consumption 4 hrs after mesulergine treatment while the CED remained unchanged with total food intake dose dependently increased as a consequence. At 24 hrs measurements SD consumption was increased only for the dose of 1 mg/kg of mesulergine, while a dose dependent decrease of CED intake was observed. Total food intake was unchanged for the dose of 1 mg/kg and decreased with the dose of 3 mg/kg consequently. A dose dependent decrease of rats body weight was observed too. 4. A significant increase of 5-HIAA/5-HT ratio in (Hy) and (St) for the dose of 1 mg/kg and in (Hi) for the dose of 3 mg/kg with no changes of DA turnover were found. 5. The above data suggest a dual mode of action of mesulergine presented as a short term hyperphagia due to simultaneous antiserotonergic and dopaminergic activity and long-term hypophagia due to long-term agonistic effects of dopaminergic neurons.  相似文献   

9.
Fenfluramine, a serotonin releaser and uptake inhibitor, has been widely prescribed as an appetite suppressant. Despite its popular clinical use, however, the precise neural pathways and specific 5-HT receptors that account for its anorectic effect have yet to be elucidated. To test the hypothesis that stimulation of 5-HT1B receptors is required for the anorectic effect of fenfluramine, we assessed food intake in wild-type and 5-HT1B knock-out mice. Next, to determine possible brain structures and pathways that may contribute to the 5-HT1B-mediated effects of fenfluramine, we studied by immunohistochemistry the induction of the immediate early gene c-fos. Although the effect of fenfluramine on locomotion was indistinguishable between both wild-type and 5-HT1B knock-out mice, the anorectic effect of the drug was absent in only the knock-out mice. Furthermore, the induction of c-Fos immunoreactivity found in the paraventricular nucleus of the hypothalamus (PVN) of wild-type mice was substantially reduced in the knock-outs. Induction in the central amygdaloid nucleus (CeA) and in the bed nucleus of the stria terminalis (BNST), although robust in wild-type animals, was completely absent in knock-out animals. The mixed 5-HT1A/1B agonist RU24969 was able to mimic both the hypophagia and c-fos induction elicited by fenfluramine in wild-type mice, but not in the 5-HT1B knock-out mice. Our results thus demonstrate that stimulation of 5-HT1B receptors is required for fenfluramine-induced anorexia and suggest a role for the PVN, CeA, and BNST in mediating this effect.  相似文献   

10.
An extensive analysis of subcellular serotonin (5-HT) compartmentation with and without reserpine was undertaken in order to localize further the effect of LSD on rat brain 5-HT. Modification of the subfractionation procedure resulted in an increase in purity of fractions and a decrease in variability of 5-HT content. With the modified procedure, the administration of LSD produced a significant increase in 5-HT in the nerve-ending fraction prepared from rat whole brain. LSD caused a 50% increase in 5-HT in the vesicular fraction which was recovered after osmotic disruption of nerve-endings. The increase of 5-HT in the vesicular fraction after LSD was not demonstrable in rats treated with reserpine for as long as 2 weeks postreserpine. Instead, with reserpine pretreatment the LSD-induced increase in 5-HT was localized to the intrasynaptosomally derived "end supernatant" as early as 48 hours postreserpine. Thus, an unanticipated "juxtavesicular" site capable of 5-HT retention or binding was detected. In crude subcellular fractions, by contrast, significant increase in 5-HT were not observed with LSD administration until 4 days after reserpine, at which time at least a 50% 5-HT repletion had occurred. This study of drug interactions suggests a juxtavesicular compartment that may be of functional importance in presynaptic binding or transport of 5-HT.  相似文献   

11.
Acidosis in cattle: a review   总被引:1,自引:0,他引:1  
Acute and chronic acidosis, conditions that follow ingestion of excessive amounts of readily fermented carbohydrate, are prominent production problems for ruminants fed diets rich in concentrate. Often occurring during adaptation to concentrate-rich diets in feedyards, chronic acidosis may continue during the feeding period. With acute acidosis, ruminal acidity and osmolality increase markedly as acids and glucose accumulate; these can damage the ruminal and intestinal wall, decrease blood pH, and cause dehydration that proves fatal. Laminitis, polioencephalomalacia, and liver abscesses often accompany acidosis. Even after animals recover from a bout of acidosis, nutrient absorption may be retarded. With chronic acidosis, feed intake typically is reduced but variable, and performance is depressed, probably due to hypertonicity of digesta. Acidosis control measures include feed additives that inhibit microbial strains that produce lactate, that stimulate activity of lactate-using bacteria or starch-engulfing ruminal protozoa, and that reduce meal size. Inoculation with microbial strains capable of preventing glucose or lactate accumulation or metabolizing lactate at a low pH should help prevent acidosis. Feeding higher amounts of dietary roughage, processing grains less thoroughly, and limiting the quantity of feed should reduce the incidence of acidosis, but these practices often depress performance and economic efficiency. Continued research concerning grain processing, dietary cation-anion balance, narrow-spectrum antibiotics, glucose or lactate utilizing microbes, and feeding management (limit or program feeding) should yield new methods for reducing the incidence of acute and chronic acidosis.  相似文献   

12.
Rats experience anorexia and reduction or cessation in growth after being provided a zinc-deficient diet. While zinc deficient, intake levels may be reduced 50% or more compared to control rats. In the present report, diurnal food intake patterns of male Sprague-Dawley rats were measured during zinc deficiency. In Study 1, rats consuming a modified AIN-93 diet were tested during the dark phase using an automated food weighing system. In zinc-deficient animals (Zn-), the onset of the first meal of the dark phase was delayed compared to zinc-adequate rats (Zn+; 106+/-47 vs. 23+/-5 min; p<0.05) and the number of meals consumed during the dark phase was reduced in Zn- vs. Zn+ rats (3.9+/-0.5 vs 7.1+/-0.4; p<0.05). In Study 2, diurnal food intake patterns were tested using a three-choice macronutrient self-selection paradigm of carbohydrate-, protein-, and fat-containing diets made deficient or adequate in zinc (1 or 30 mg Zn/kg diet). Food intake was recorded in the early-, mid-, late-dark period (4 h each) and light period (12 h). Carbohydrate intake was 70% of total intake of both Zn+ and Zn- rats during the first 5 days, but decreased significantly to 50% in the Zn- group during the last 5 days. Fat intake increased significantly in the Zn- group during the last 5 days. This increase was the result of 4 of 15 Zn- rats increasing their intake of fat significantly. Results of this study indicate that zinc status alters dark phase and macronutrient selection patterns by delaying consumption of the initial meal of the dark phase, reducing the average meal number and by changing the dominant macronutrient preference of some Zn- rats.  相似文献   

13.
To examine the direct effects of serotonin (5-HT) on the release and synthesis of corticotropin-releasing factor (CRF) in the hypothalamic paraventricular nucleus (PVN), 5-HT was microinjected just onto the bilateral PVN of conscious rats. Plasma adrenocorticotropic hormone (ACTH) levels peaked at 30 min and returned to the basal levels in 90 min. Northern blot analysis revealed that the CRF messenger RNA (mRNA) level in the PVN as well as the proopiomelanocortin mRNA level in the anterior pituitary significantly increased 120 min after the 5-HT injections (50-250 nmol/side). Pretreatment with intracerebroventricular (i.c.v.) injection of pindobind 5-HT1A (5 nmol) or LY-278584 (500 nmol) completely abolished the 5-HT-induced ACTH response, whereas LY-53857 (100 nmol) was without effect. These results suggest that 5-HT stimulates CRF release, which has interactions with 5-HT1A and 5-HT3 receptors on CRF neurons in the PVN, and activates CRF synthesis in conscious rats.  相似文献   

14.
BACKGROUND: Normally the lateral hypothalamic area (LHA) and the ventromedial nucleus (VMN) interact to regulate food intake (FI), the product of meal number (MN) and meal size (MZ), by changes in neurotransmitters, mainly dopamine and serotonin. Change in LHA dopamine influences meal size; while in VMN, decreasing dopamine and increasing serotonin levels influence meal number. Whether this situation exists in early cancer anorexia was tested in a series of studies to examine the role of the hypothalamus in the pathogenesis of early cancer anorexia. MATERIALS AND METHODS: In experiment 1, male Fischer tumor-bearing (TB) rats and weight-matched controls had FI, MN, and MZ measured continuously via a computerized rat eater meter. At onset of anorexia, feeding patterns were measured. In experiment 2, the VMN was temporarily blocked with 0.32 microgram of colchicine in TB rats, while TB controls had an equal volume of intra-VMN saline, and changes in feeding patterns were measured. In experiment 3, changes in VMN dopamine and serotonin were measured via microdialysis at anorexia and after tumor resection. RESULTS: In experiment 1, with the onset of anorexia, food intake decreased significantly in TB rats, initially by a decrease in MN and then by a decrease in both MN and MZ. No change occurred in controls, suggesting that VMN versus LHA played a more significant role in mediation of cancer anorexia. In experiment 2, following VMN block, FI increased significantly in anorectic TB rats, achieved by an almost exclusive increase in MN with minimal change in MZ, thus supporting the role of the VMN in anorexia. In experiment 3, at the onset of anorexia, FI decreased significantly in TB rats versus controls. TB rats had a significant increase in VMN serotonin and a significant decrease in VMN dopamine. After tumor resection, food intake improved and high levels of serotonin normalized with no change in dopamine. CONCLUSION: Serotoninergic and dopaminergic systems are involved in the etiology of cancer anorexia. The changes in food intake are mediated via the VMN by a decrease in meal number.  相似文献   

15.
The genetically dystonic (dtsz) hamster is an autosomal recessive mutant that shares several features with paroxysmal dystonia, i.e., a subcategory of inherited idiopathic dystonia in humans. Because the serotonin (5-HT) system has been suggested to be involved in dystonia, we examined the functional responsiveness of the 5-HT system in dystonic hamsters by administering various 5-HT agonists and antagonists selective for different receptor subtypes and observing the effects on dystonic attacks as well as the behavioural responses associated with drug administration. Paradoxically, marked prodystonic effects (i.e., increased severity and/or decreased latency of dystonic attacks) were seen with both the selective 5-HT1A receptor agonist 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT) and the selective and "silent" 5-HT1A receptor antagonist, N-tert-butyl-3[4-(2-methoxyphenyl)piperazin-1-yl]-2- phenylpropionamide [(+)-WAY-100135], whereas other 5-HT1A receptor antagonists, i.e., methyl 4[4-(4-[1,1,3-trioxo-2H-1,2-benzoiosothiazol-2-yl]butyl)-1- piperazinyl]1-H-indole-2-carboxylate (SDZ 216-525) and N1-bromoacetyl-N8-3'-(4-indolyloxy)-2'-hydroxypropyl-(Z)-1,8- diamino-p-methane (pindobind-5-HT1A) did not alter dystonia to any comparable extent. Because among these 5-HT1A receptor antagonists, (+)-WAY-100135 is the only drug known to be not only silent at postsynaptic but also presynaptic (somatodendritic) 5-HT1A receptors, the marked prodystonic effect of this drug could relate to increased 5-HT release as a result of the blockade of somatodendritic 5-HT1A receptors. The only 5-HT1A receptor antagonist that exerted antidystonic effects in hamsters was pindolol, which, however, could be related to its beta-adrenoceptor blocking action. The 5-HT1A receptor partial agonist ipsapirone exerted moderate prodystonic activity. Prodystonic activity was also determined for the mixed 5-HT1A/5-HT2 receptor agonist 5-methoxy-N,N-dimethyltryptamine, although this drug was less potent in this regard than 8-OH-DPAT. The 5-HT2 receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) exerted prodystonic effects in mutant hamsters, which, however, were also seen after the administration of the 5-HT2 receptor antagonist ritanserin. Collectively, the results of this study demonstrate that dystonia in genetically dystonic hamsters can be affected by pharmacologic manipulation of 5-HT receptors. The data may also indicate that dystonia is not a potential clinical application for selective 5-HT1A or 5-HT2 receptor antagonists.  相似文献   

16.
9 male Sprague-Dawley rats equipped with chronic intragastric and intraduodenal catheters received small infusions of various solutions through 1 catheter during spontaneous meals. Regardless of which compartment or which solution was infused, the Ss maintained a constant daily nutrient intake. However, all hypertonic solutions reduced mean meal size and increased the frequency of feeding when injected intraduodenally, while only nutritive solutions reduced mean meal size when infused intragastrically. Water ingestion varied with the effective osmotic pressure of the injected solutions, but there were no differences in water ingestion as a function of the compartment infused. Data suggest both the presence of a duodenal satiety mechanism and the validity of interpreting the meal patterns of vagotomized Ss eating a liquid diet as resulting from the rapid emptying of the diet into the duodenum. (18 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

17.
Two experiments, one with 6 18-60 day old female Wistar rats and the other with 12 Wistar and Long-Evans rats, examined the development of adult rat meal patterns. Although diurnal differences in food intake were present as early as 18 days after birth, with significantly more food being consumed in the dark, these differences were much smaller than those seen in adults. Nocturnal feeding gradually increased, reaching adult levels at around 6 wks of age. In general, little or no direct correlation was observed between meal size and postmeal interval length until rats were 4-5 wks old. Thereafter, correlations of +.40 or higher were usually observed. On the other hand, correlations averaging around zero were observed between meal size and premeal interval at all ages studied. Results are discussed in terms of their implications for proposed physiological mechanisms determining meal onset. (25 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

18.
This study was designed to determine the possible role of brain glucagon-like peptide-1 (GLP-1) receptors in feeding behavior. In situ hybridization showed colocalization of the mRNAs for GLP-1 receptors, glucokinase, and GLUT-2 in the third ventricle wall and adjacent arcuate nucleus, median eminence, and supraoptic nucleus. These brain areas are considered to contain glucose-sensitive neurons mediating feeding behavior. Because GLP-1 receptors, GLUT-2, and glucokinase are proteins involved in the multistep process of glucose sensing in pancreatic beta cells, the colocalization of specific GLP-1 receptors and glucose sensing-related proteins in hypothalamic neurons supports a role of this peptide in the hypothalamic regulation of macronutrient and water intake. This hypothesis was confirmed by analyzing the effects of both systemic and central administration of GLP-1 receptor ligands. Acute or subchronic intraperitoneal administration of GLP-1 (7-36) amide did not modify food and water intake, although a dose-dependent loss of body weight gain was observed 24 h after acute administration of the higher dose of the peptide. By contrast, the intracerebroventricular (i.c.v.) administration of GLP-1 (7-36) amide produced a biphasic effect on food intake characterized by an increase in the amount of food intake after acute i.c.v. delivery of 100 ng of the peptide. There was a marked reduction of food ingestion with the 1,000 and 2,000 ng doses of the peptide, which also produced a significant decrease of water intake. These effects seemed to be specific because i.c.v. administration of GLP-1 (1-37), a peptide with lower biological activity than GLP-1 (7-36) amide, did not change feeding behavior in food-deprived animals. Exendin-4, when given by i.c.v. administration in a broad range of doses (0.2, 1, 5, 25, 100, and 500 ng), proved to be a potent agonist of GLP-1 (7-36) amide. It decreased, in a dose-dependent manner, both food and water intake, starting at the dose of 25 ng per injection. Pretreatment with an i.c.v. dose of a GLP-1 receptor antagonist [exendin (9-39); 2,500 ng] reversed the inhibitory effects of GLP-1 (7-36) amide (1,000 ng dose) and exendin-4 (25 ng dose) on food and water ingestion. These findings suggest that GLP-1 (7-36) amide may modulate both food and drink intake in the rat through a central mechanism.  相似文献   

19.
Fenfluramine, a clinically prescribed appetite suppressant, has been found to damage brain serotonin (5-HT) neurons in every animal species tested to date. Recent findings indicate that fluoxetine, a selective 5-HT reuptake inhibitor (SSRI), can prevent fenfluramine-induced 5-HT neurotoxicity without blocking fenfluramine-induced appetite suppression. The purpose of our studies was several-fold: 1) To determine whether the ability for fluoxetine to dissociate fenfluramine-induced anorexia and neurotoxicity is dose-related; 2) to ascertain whether other SSRIs also prevent fenfluramine-induced neurotoxicity without altering its anorectic effect; 3) to determine whether similar fluoxetine/fenfluramine interactions are seen in another animal species (i.e., mice) and 4) to determine whether decreases in food intake seen after the fluoxetine/fenfluramine combination can be attributed to nonspecific behavioral suppression. Results from our studies indicate that fluoxetine's effects are, indeed, dose-related, because higher doses of fluoxetine are required to protect against the 5-HT neurotoxic effects of higher doses of fenfluramine. Further, our results indicate that fluoxetine's effects generalize to all other SSRIs tested (citalopram, paroxetine and sertraline), as well as to other species (mice). Finally, our results demonstrate that anorexia in animals receiving the fenfluramine/fluoxetine combination is not secondary to nonspecific behavioral suppression, because water intake is increased although food intake is decreased in the same animals. Together, these data suggest that the anorectic and 5-HT neurotoxic effects of fenfluramine may involve different mechanisms, and that by combining fenfluramine with SSRIs, it may be possible to exploit fenfluramine's clinically useful properties (e.g., anorexia) without risking brain 5-HT neural injury.  相似文献   

20.
Zinc is found in many brain regions where it participates in important processes such as neurotransmission and neuromodulation. We previously demonstrated that acute third ventricle injection of zinc inhibits water intake in dehydrated rats. The present study was undertaken to explore a possible link between zinc-induced inhibition of water intake in dehydrated rats and serotonergic systems in the brain. Adult, male Wistar rats had the third ventricle cannulated a week before the experiments. After an overnight period of water deprivation, the animals (N = 12 per group) received acute intracerebroventricular injections (2 microliters) of Zn(Ac)2 (6.7, 67.1 and 671.6 ng/rat). Control animals (N = 12) received NaAc (671.6 ng/rat). Zinc-treated animals displayed a significant, dose-dependent reduction in water intake. Water intake after 120 min was 7.70 +/- 0.50 ml in control (NaAc-treated) dehydrated rats while animals treated with the highest dose of Zn(Ac)2 drank 2.63 +/- 0.73 ml. Third ventricle injections of SDZ 216-525, a selective 5-HT1A receptor antagonist, 45 min before zinc administration, generated a dose-dependent reversal of zinc-induced thirst blockade in water-deprived rats. At the highest dose used (10 micrograms/rat), the water intake of the animals after 120 min was 7.30 +/- 0.23 ml, a value equal to that of control animals. These data suggest that zinc may decrease water intake in dehydrated rats by activation of a 5-HT1A receptor-related mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号