首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In practical engineering design, most data sets for system uncertainties are insufficiently sampled from unknown statistical distributions, known as epistemic uncertainty. Existing methods in uncertainty-based design optimization have difficulty in handling both aleatory and epistemic uncertainties. To tackle design problems engaging both epistemic and aleatory uncertainties, reliability-based design optimization (RBDO) is integrated with Bayes theorem. It is referred to as Bayesian RBDO. However, Bayesian RBDO becomes extremely expensive when employing the first- or second-order reliability method (FORM/SORM) for reliability predictions. Thus, this paper proposes development of Bayesian RBDO methodology and its integration to a numerical solver, the eigenvector dimension reduction (EDR) method, for Bayesian reliability analysis. The EDR method takes a sensitivity-free approach for reliability analysis so that it is very efficient and accurate compared with other reliability methods such as FORM/SORM. Efficiency and accuracy of the Bayesian RBDO process are substantially improved after this integration.  相似文献   

2.
Traditional reliability-based design optimization (RBDO) generally describes uncertain variables using random distributions, while some crucial distribution parameters in practical engineering problems can only be given intervals rather than precise values due to the limited information. Then, an important probability-interval hybrid reliability problem emerged. For uncertain problems in which interval variables are included in probability distribution functions of the random parameters, this paper establishes a hybrid reliability optimization design model and the corresponding efficient decoupling algorithm, which aims to provide an effective computational tool for reliability design of many complex structures. The reliability of an inner constraint is an interval since the interval distribution parameters are involved; this paper thus establishes the probability constraint using the lower bound of the reliability degree which ensures a safety design of the structure. An approximate reliability analysis method is given to avoid the time-consuming multivariable optimization of the inner hybrid reliability analysis. By using an incremental shifting vector (ISV) technique, the nested optimization problem involved in RBDO is converted into an efficient sequential iterative process of the deterministic design optimization and the hybrid reliability analysis. Three numerical examples are presented to verify the proposed method, which include one simple problem with explicit expression and two complex practical applications.  相似文献   

3.
For the problem of evidence-theory-based reliability design optimization (EBDO), this paper presents a decoupling approach which provides an effective tool for the reliability design of some complex structures with epistemic uncertainty. The approach converts the original nested optimization into a sequential iterative process including design optimization and reliability analysis. In each iteration step, through the uniformity algorithm, the original EBDO is firstly transformed to a conventional reliability-based design optimization (RBDO) and an optimal solution is obtained by solving it. At the solution, the first-order approximate reliability analysis method (FARM) is then used to perform the evidence-theory-based reliability analysis for each constraint. In addition, the RBDO solving and the evidence-theory-based reliability analysis are carried out alternately until reaching the convergence. Finally, two numerical examples and a practical engineering application show the effectiveness of the proposed method.  相似文献   

4.
This paper develops an efficient methodology to perform reliability-based design optimization (RBDO) by decoupling the optimization and reliability analysis iterations that are nested in traditional formulations. This is achieved by approximating the reliability constraints based on the reliability analysis results. The proposed approach does not use inverse first-order reliability analysis as other existing decoupled approaches, but uses direct reliability analysis. This strategy allows a modular approach and the use of more accurate methods, including Monte-Carlo-simulation (MCS)-based methods for highly nonlinear reliability constraints where first-order reliability approximation may not be accurate. The use of simulation-based methods also enables system-level reliability estimates to be included in the RBDO formulation. The efficiency of the proposed RBDO approach is further improved by identifying the potentially active reliability constraints at the beginning of each reliability analysis. A vehicle side impact problem is used to examine the proposed method, and the results show the usefulness of the proposed method.  相似文献   

5.
In the field of deterministic structural optimization, the designer reduces the structural cost without taking into account uncertainties concerning materials, geometry and loading. This way, the resulting optimum solution may represent a lower level of reliability and thus a higher risk of failure. It is the objective of reliability-based design optimization (RBDO) to design structures that should be both economic and reliable. The coupling between mechanical modeling, reliability analyses and optimization methods leads to very high computational costs and weak convergence stability. Since the traditional RBDO solution is achieved by alternating between reliability and optimization iterations, the structural designers performing deterministic optimization do not consider the RBDO model as a practical tool for the design of real structures. Fortunately, a hybrid method based on simultaneous solution of the reliability and the optimization problem, has successfully reduced the computational time problem. The hybrid method allows us to satisfy a required reliability level, but the vector of variables here contains both deterministic and random variables. The hybrid RBDO problem is thus more complex than that of deterministic design. The major difficulty lies in the evaluation of the structural reliability, which is carried out by a special optimization procedure. In this paper a new methodology is presented with the aim of finding a global solution to RBDO problems without additional computing cost for the reliability evaluation. The safety factor formulation for a single limit state case has been used to efficiently reduce the computational time . This technique is fundamentally based on a study of the sensitivity of the limit state function with respect to the design variables. In order to demonstrate analytically the efficiency of this methodology, the optimality condition is then used. The efficiency of this technique is also extended to multiple limit state cases. Two numerical examples are presented at the end of the paper to demonstrate the applicability of the new methodology.  相似文献   

6.
Traditional reliability-based design optimization (RBDO) requires a double-loop iteration process. The inner optimization loop is to find the reliability and the outer is the regular optimization loop to optimize the RBDO problem with reliability objectives or constraints. It is known that the computation can be prohibitive when the associated function evaluation is expensive. This situation is even worse when a large number of reliability constraints are present. As a result, many approximate RBDO methods, which convert the double loop to a single loop, have been developed. In this research, an engineering problem with a large number of constraints (144) is designed to test RBDO methods based on the first-order reliability method (FORM), including single- and double-loop methods. In addition to the number of constraints, this problem possesses many local minimums. Some original authors of the RBDO methods are also asked to solve the same problem. The results and the efficiencies for different methods are published and discussed.  相似文献   

7.

The efficiency and robustness of reliability techniques are important in reliability-based design optimization (RBDO). Commonly, advanced mean value (AMV) is utilized in reliability loop of RBDO but unstable solutions using AMV may be obtained for highly concave performance functions. Owing to the challenges of commonly reliability methods, the conjugate gradient analysis (CGA) is proposed as a robust methodology but it shows inefficient results for convex constraints. In this research, hybrid conjugate mean value (HCMV) method is proposed using sufficient condition for the enhancement of efficiency and robustness of RBDO. The CGA and AMV are dynamically utilized for simple solution of convex/concave constraints using sufficient descent criterion in HCMV. The HCMV is used to evaluate the convergence performances and is compared with numerous existing reliability methods through three reliability problems (two concave/convex mathematical examples and one applicable structure) and four RBDO problems. From the numerical results, the HCMV exhibited the better efficiency, and robustness compared to other studied formulations in reliability and RBDO problems.

  相似文献   

8.
The application of reliability-based design optimization (RBDO) is hindered by the unbearable computational cost in the structure reliability evaluating process. This study proposes an optimal shifting vector (OSV) approach to enhance the efficiency of RBDO. In OSV, the idea of using an optimal shifting vector in the decoupled method and the notation of conducting reliability analysis in the super-sphere design space are proposed. The shifted limit state function, instead of the specific performance function, is used to identify the inverse most probable point (IMPP) and derive the optimal shifting vector for accelerating the optimization process. The super-sphere design space is applied to reduce the number of constraints and design variables for the novel reliability analysis model. OSV is very efficient for highly nonlinear problems, especially when the contour lines of the performance functions vary widely. The computation capability of the proposed method is demonstrated and compared to existing RBDO methods using four mathematical and engineering examples. The comparison results show that the proposed OSV approach is very efficient.  相似文献   

9.
This paper presents a numerical investigation of the probabilistic approach in estimating the reliability of wire bonding, and develops a reliability-based design optimization Methodology (RBDO) for microelectronic device structures. The objective of the RBDO method is to design structures which should be both economical and reliable where the solution reduces the structural weight in uncritical regions. It does not only provide an improved design, but also a higher level of confidence in the design. The Finite element simulation model intends to analyze the sequence of the failure events in power microelectronic devices. This numerical model is used to estimate the probability of failure of power module regarding the wire bonding connection. However, due to time-consuming of the multiphysics finite element simulation, a response surface method is used to approximate the response output of the limit state, in this way the reliability analysis is performed directly to the response surface by using the First and the Second Order Reliability Methods FORM/SORM. Subsequently the reliability analysis is integrated in the optimization process to improve the performance and reliability of structural design of wire bonding. The sequential RBDO algorithm is used to solve this problem and to find the best structural designs which realize the best compromise between cost and safety.  相似文献   

10.
Conventional reliability-based design optimization (RBDO) approaches require high computing costs. Among the existing RBDO methods, the single loop single vector approach (SLSV) converts the RBDO problem into a single loop deterministic optimization. Hence, it can efficiently reduce the design cost compared to other methods. However, this method has a weakness in that instability or inaccuracy in convergence can be increased according to the problem characteristics. It often happens when the performance function is highly nonlinear or concave. In this study, a novel method is proposed to overcome the problems. It is an SLSV method using the conjugate gradient that is calculated with the gradient directions at the most probable points (MPP) of the previous cycles. Mathematical examples and structural applications are solved to verify the proposed method. The numerical performances of the proposed method are compared with other RBDO methods such as the RIA, PMA, SORA and SLSV approaches. It is shown that the SLSV method using the conjugate gradient (SLSVCG) is not greatly influenced by problem characteristics and the convergence capability is quite superior. Also, the computational cost of the proposed method is significantly reduced and an excellent solution satisfying the specified reliability is obtained.  相似文献   

11.
In the reliability-based design optimization (RBDO) model, the mean values of uncertain system variables are usually applied as design variables, and the cost is optimized subject to prescribed probabilistic constraints as defined by a nonlinear mathematical programming problem. Therefore, a RBDO solution that reduces the structural weight in uncritical regions does not only provide an improved design but also a higher level of confidence in the design. In this paper, we present recent developments for the RBDO model relative to two points of view: reliability and optimization. Next, we develop several distributions for the hybrid method and the optimum safety factor methods (linear and nonlinear RBDO). Finally, we demonstrate the efficiency of our safety factor approach extended to nonlinear RBDO with application to a tri-material structure.  相似文献   

12.
Reliability-based design optimization (RBDO) is a methodology for finding optimized designs that are characterized with a low probability of failure. Primarily, RBDO consists of optimizing a merit function while satisfying reliability constraints. The reliability constraints are constraints on the probability of failure corresponding to each of the failure modes of the system or a single constraint on the system probability of failure. The probability of failure is usually estimated by performing a reliability analysis. During the last few years, a variety of different formulations have been developed for RBDO. Traditionally, these have been formulated as a double-loop (nested) optimization problem. The upper level optimization loop generally involves optimizing a merit function subject to reliability constraints, and the lower level optimization loop(s) compute(s) the probabilities of failure corresponding to the failure mode(s) that govern(s) the system failure. This formulation is, by nature, computationally intensive. Researchers have provided sequential strategies to address this issue, where the deterministic optimization and reliability analysis are decoupled, and the process is performed iteratively until convergence is achieved. These methods, though attractive in terms of obtaining a workable reliable design at considerably reduced computational costs, often lead to premature convergence and therefore yield spurious optimal designs. In this paper, a novel unilevel formulation for RBDO is developed. In the proposed formulation, the lower level optimization (evaluation of reliability constraints in the double-loop formulation) is replaced by its corresponding first-order Karush–Kuhn–Tucker (KKT) necessary optimality conditions at the upper level optimization. Such a replacement is computationally equivalent to solving the original nested optimization if the lower level optimization problem is solved by numerically satisfying the KKT conditions (which is typically the case). It is shown through the use of test problems that the proposed formulation is numerically robust (stable) and computationally efficient compared to the existing approaches for RBDO.  相似文献   

13.
The original problem of reliability-based design optimization (RBDO) is mathematically a nested two-level structure that is computationally time consuming for real engineering problems. In order to overcome the computational difficulties, many formulations have been proposed in the literature. These include SORA (sequential optimization and reliability assessment) that decouples the nested problems. SLA (single loop approach) further improves efficiency in that reliability analysis becomes an integrated part of the optimization problem. However, even SLA method can become computationally challenging for real engineering problems involving many reliability constraints. This paper presents an enhanced version of SLA where the first phase is based on approximation at nominal design point. After convergence of first iterative phase is reached the process transitions to a second phase where approximations of reliability constraints are carried out at their respective minimum performance target point (MPTP). The solution is implemented in Altair OptiStruct, where adaptive approximation and constraint screening strategies are utilized in the RBDO process. Examples show that the proposed two-phase approach leads to reduction in finite element analyses while preserving equal solution quality.  相似文献   

14.
The design of high technology structures aims to define the best compromise between cost and safety. The Reliability-Based Design Optimization (RBDO) allows us to design structures which satisfy economical and safety requirements. However, in practical applications, the coupling between the mechanical modelling, the reliability analyses and the optimization methods leads to very high computational time and weak convergence stability. Traditionally, the solution of the RBDO model is achieved by alternating reliability and optimization iterations. This approach leads to low numerical efficiency, which is disadvantageous for engineering applications on real structures. In order to avoid this difficulty, we propose herein a very efficient method based on the simultaneous solution of the reliability and optimization problems. The procedure leads to parallel convergence for both problems in a Hybrid Design Space (HDS). The efficiency of the proposed methodology is demonstrated on the design of a steel hook, where the RBDO is combined with Finite Element Analysis (FEA).  相似文献   

15.
Reliability-Based Design Optimization (RBDO) algorithms, such as Reliability Index Approach (RIA) and Performance Measure Approach (PMA), have been developed to solve engineering optimization problems under design uncertainties. In some existing methods, the random design space is transformed to standard normal design space and the reliability assessment, such as reliability index from RIA or performance measure from PMA, is estimated in order to evaluate the failure probability. When the random variable is arbitrarily distributed and cannot be properly fitted to any known form of probability density function, the existing RBDO methods cannot perform reliability analysis in the original design space. This paper proposes a novel Ensemble of Gradient-based Transformed Reliability Analyses (EGTRA) to evaluate the failure probability of any arbitrarily distributed random variables in the original design space. The arbitrary distribution of the random variable is approximated by a merger of multiple Gaussian kernel functions in a single-variate coordinate that is directed toward the gradient of the constraint function. The failure probability is then estimated using the ensemble of each kernel reliability analysis. This paper further derives a linearly approximated probabilistic constraint at the design point with allowable reliability level in the original design space using the aforementioned fundamentals and techniques. Numerical examples with generated random distributions show that existing RBDO algorithms can improperly approximate the uncertainties as Gaussian distributions and provide solutions with poor assessments of reliabilities. On the other hand, the numerical results show EGTRA is capable of efficiently solving the RBDO problems with arbitrarily distributed uncertainties.  相似文献   

16.
The enhanced weighted simulation-based design method in conjunction with particle swarm optimization (PSO) is developed as a pseudo double-loop algorithm for accurate reliability-based design optimization (RBDO). According to this hybrid method, generated samples of weighed simulation method (WSM) are considered as initial population of the PSO. The proposed population is then employed to evaluate the safety level of each PSO swarm (design candidates) during movement. Using this strategy, there is no required to conduct new sampling for reliability assessment of design candidates (PSO swarms). Employing PSO as the search engine of RBDO and WSM as the reliability analyzer provide more accurate results with few samples and also increase the application range of traditional WSM. Besides, a shift strategy is also introduced to increase the capability of the WSM to investigate general RBDO problems including both deterministic and random design variables. Several examples are investigated to demonstrate the accuracy and robustness of the method. Results demonstrate the computational efficiency and superiority of the proposed method for practical engineering problems with highly nonlinear and implicit probabilistic constrains.  相似文献   

17.
Reliability-based design optimization (RBDO) in practical applications is hindered by its huge computational cost during structure reliability evaluating process. Kriging-model-based RBDO is an effective method to overcome this difficulty. However, the accuracy of Kriging model depends directly on how to select the sample points. In this paper, the local adaptive sampling (LAS) is proposed to enhance the efficiency of constructing Kriging models for RBDO problems. In LAS, after initialization, new samples for probabilistic constraints are mainly selected within the local region around the current design point from each optimization iteration, and in the local sampling region, sample points are first considered to be located on the limit state constraint boundaries. The size of the LAS region is adaptively defined according to the nonlinearity of the performance functions. The computation capability of the proposed method is demonstrated using three mathematical RBDO problems and a honeycomb crash-worthiness design application. The comparison results show that the proposed method is very efficient.  相似文献   

18.
This paper puts forward two new methods for reliability-based design optimization (RBDO) of complex engineering systems. The methods involve an adaptive-sparse polynomial dimensional decomposition (AS-PDD) of a high-dimensional stochastic response for reliability analysis, a novel integration of AS-PDD and score functions for calculating the sensitivities of the failure probability with respect to design variables, and standard gradient-based optimization algorithms, encompassing a multi-point, single-step design process. The two methods, depending on how the failure probability and its design sensitivities are evaluated, exploit two distinct combinations built on AS-PDD: the AS-PDD-SPA method, entailing the saddlepoint approximation (SPA) and score functions; and the AS-PDD-MCS method, utilizing the embedded Monte Carlo simulation (MCS) of the AS-PDD approximation and score functions. In both methods, the failure probability and its design sensitivities are determined concurrently from a single stochastic simulation or analysis. When applied in collaboration with the multi-point, single-step framework, the proposed methods afford the ability of solving industrial-scale design problems. Numerical results stemming from mathematical functions or elementary engineering problems indicate that the new methods provide more computationally efficient design solutions than existing methods. Furthermore, shape design of a 79-dimensional jet engine bracket was performed, demonstrating the power of the AS-PDD-MCS method developed to tackle practical RBDO problems.  相似文献   

19.
Experience with approximate reliability-based optimization methods   总被引:1,自引:5,他引:1  
Traditional reliability-based design optimization (RBDO) requires a double loop iteration process. The inner optimization loop is to find the most probable point (MPP) and the outer is the regular optimization loop to optimize the RBDO problem with reliability objectives or constraints. It is well known that the computation can be prohibitive when the associated function evaluation is expensive. As a result, many approximate RBDO methods, which convert the double loop to a single loop, have been developed. In this work, several approximate RBDO methods are coded, discussed, and tested against a double loop algorithm through four design problems.  相似文献   

20.
The reliability-based design optimization (RBDO) can be described by the design potential concept in a unified system space, where the probabilistic constraint is identified by the design potential surface of the reliability target that is obtained analytically from the first-order reliability method (FORM). This paper extends the design potential concept to treat nonsmooth probabilistic constraints and extreme case design in RBDO. In addition, refinement of the design potential surface, which yields better optimum design, can be obtained using more accurate second-order reliability method (SORM). By integrating performance probability analysis into the iterative design optimization process, the design potential concept leads to a very effective design potential method (DPM) for robust system parameter design. It can also be applied effectively to extreme case design (ECD) by directly representing a probabilistic constraint in terms of the system performance function. Received July 25, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号