首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 554 毫秒
1.
This paper proposes a fast and accurate method to measure the constants a and n of the power law ∆ Vth = atn for HfSiON/SiO2 dielectric nMOSFETs under positive bias temperature instability (PBTI), where ∆ Vth is a shift of threshold voltage, and t is stress duration. The proposed method requires one nMOSFET only, uses a voltage ramp stress (VRS), measures ∆ Vth vs. t data during VRS, uses a regression method to fit the data for each VRS pulse to the power law to obtain a and n at each stress voltage Vg,str, then obtains five voltage-independent constants for the power law after fitting the curves of a and n vs. Vg,str to empirical models. The five voltage-independent constants agreed very well with those obtained using the constant voltage stress (CVS) method. After obtaining the voltage-independent constants, the lifetime tL at an operating voltage Vop was estimated using the power law. The estimated tL = 1.67 × 108 s was quite close to tL = 1.74 × 108 s estimated using CVS, and to tL = 1.72 × 108 s estimated by extrapolating the ΔVth vs. t curve measured at Vg,str = Vop = 1.2 V to ΔVth = 200 mV. The time required for measurement was 900 s, compared to 30,000 s for the CVS method. These experimental results show that the proposed VRS-regression method is very useful for screening nMOSFETs under PBTI.  相似文献   

2.
PBTI degradation on FinFETs with HfO2/TiN gate stack (EOT < 1 nm) is studied. Thinner TiN layer decreases interfacial oxide thickness, and reduces PBTI lifetime. This behavior is consistent with the results in planar devices. Corner rounding effect on PBTI is also analyzed. Finally, charge pumping measurements on devices with several fin widths devices apparently show a higher density of defects in the top-wall high-κ oxide than in the sidewall of the fin. This could explain more severe PBTI degradation.  相似文献   

3.
Cut-off frequency increase from 12.1 GHz to 26.4 GHz, 52.1 GHz and 91.4 GHz is observed when the 1 μm gate length GaN HEMT is laterally scaled down to LG = 0.5 μm, LG = 0.25 μm and LG = 0.125 μm, respectively. The study is based on accurately calibrated transfer characteristics (ID-VGS) of the 1 μm gate length device using Silvaco TCAD. If the scaling is also performed horizontally, proportionally to the lateral (full scaling), the maximum drain current is reduced by 38.2% when the gate-to-channel separation scales from 33 nm to 8.25 nm. Degradation of the RF performance of a GaN HEMT due to the electric field induced acceptor traps experienced under a high electrical stress is found to be about 8% for 1 μm gate length device. The degradation of scaled HEMTs reduces to 3.5% and 7.3% for the 0.25 μm and 0.125 gate length devices, respectively. The traps at energy level of ET = EV + 0.9 eV (carbon) with concentrations of NIT = 5 × 1016cm 3, NIT = 5 × 1017cm 3 and NIT = 5 × 1018cm 3 are located in the drain access region where highest electrical field is expected. The effect of traps on the cut-off frequency is reduced for devices with shorter gate lengths down to 0.125 μm.  相似文献   

4.
We experimentally examine the effective mobility in nMOSFETs with La2O3 gate dielectrics without SiOx-based interfacial layer. The reduced mobility is mainly caused by fixed charges in High-k gate dielectrics and the contribution of the interface state density is approximately 30% at Ns = 5 × 1011 cm?2 in the low 1011 cm?2 eV?1 order. It is considered that one of the effective methods for improving mobility is to utilize La-silicate layer formed by high temperature annealing. However, there essentially exists trade-off relationship between high temperature annealing and small EOT.  相似文献   

5.
This work reports that introducing lanthanide in the gate dielectric or in the gate electrode results, in both cases, in large effective work function (eWF) modulation towards n-type band-edge for Ni-FUSI devices. This is done by: (a) deposition of a Dy2O3 capping layer on the host dielectric (SiON or HfSiON), or (b) simple Yb implantation of nMOS poly gates prior to FUSI. We show that: (1) both cases result in dielectric modification with gate leakage (JG) reduction; (2) adding a cap has no significant impact on Tinv(<1 Å), while up to ~5 and 2 Å reduction occurs for SiON and HfSiON Yb-implanted devices, respectively, (3) the largest JG reduction (150×) is obtained for capped SiON devices due to dielectric intermixing and formation of a new high-k dielectric (DySiON), comparable to HfSiON in JG and mobility but with 500 mV smaller VT; (4) on the other hand, being less invasive to the host dielectric, the optimized Yb I/I option gives 18% improved mobility compared to capped SiON devices; (5) excellent process control and reliability behavior (VT instability by a.c. pulsed IV, PBTI and TDDB) is reported for both eWF tuning methods. They allow ΔeWF(n?p) values up to ~800 meV when combined with Ni–silicide FUSI phase engineering, promising for low-VT CMOS.  相似文献   

6.
Si-based field-plate 0.13 μm gate length metal-oxide-semiconductor field effect transistor (Si MOSFET) with field-plate (FP) lengths of 0.1 μm, 0.2 μm, and 0.3 μm have been fabricated and investigated. The field-plate metals were connected to gate electrode in this study to improve device gate resistance (Rg) resulting in the better microwave performance. By increasing the length of field-plate metal extension (LFPE), the off-state drain-to-source surface leakage current can be suppressed. Besides, low surface traps in FP NMOS also leads to a higher drain-to-source current (Ids) especially at high current regime compared to standard device. The power added efficiency (PAE) was 56.3% for LFPE of 0.3 μm device, and these values where 54.7% and 53.8% for LFPE of 0.2 μm and 0.1 μm devices, respectively. Wider field-plate metal extension exhibits highly potential for low noise amplifier and high efficiency power amplifier applications.  相似文献   

7.
The NBTI degradation caused by hole trapping in gate insulator process-related preexisting traps (∆ VHT) and in generated bulk insulator traps (∆ VOT) can recover in several seconds (< 10 s), whereas the long-term recovery is dominated by interface trap generation (∆ VIT). In this paper, various explanations of NBTI recovery have been reviewed and a compact analytical long-term NBTI recovery model in which the slowing down diffusivity and locking effect of H2 are involved has been derived. The triangular diffusion profile of H2 is approximated and the fitting coefficient ξ of slowing down diffusivity is related to the stress and recovery time. Our proposed model has been validated by the previous theories and numerical calculation. Moreover, the investigation of NBTI recovery on a 40-nm CMOS process has been experimentally carried out and the results show that our compact NBTI recovery model can describe the long-term recovery well.  相似文献   

8.
We study n- and pMOS devices with 3.2–30 nm thick SiON or SiO2 gate dielectrics and n++ or p++ doped polysilicon gates to identify the type and energetic location of defects created through bias temperature stress. The results clearly indicate a dependence of the type of BTS induced defects on the stress polarity and the gate poly doping. If holes are provided from the p++ poly gate and the gate dielectric is sufficiently thin, NBTI-type donor-like defects may occur even under positive bias stress conditions. For devices with sufficiently thick dielectrics or n++ poly gated devices, holes are absent during PBTI stress and acceptor-like defects are created.  相似文献   

9.
《Microelectronics Journal》2014,45(2):144-151
Now a days, high-k dielectrics have been investigated as an alternative to Silicon dioxide (SiO2) based gate dielectric for nanoscale semiconductor devices. This paper is an attempt to characterize the analog and RF performance of the high-k metal gate (HKMG) double gate (DG) metal oxide semiconductor field effect transistor (MOSFET) in nanoscale through 2-D device simulation. The results demonstrates the impact of high-k oxide layer as single and gate stack (GS). The key idea behind this investigation is to provide a physical explanation for the improved analog and RF performance exhibited by the device. The major figures of merit (FOMs) studied in this paper are transconductance (gm), output conductance (gd), transconductance generation factor (gm/ID), early voltage (VEA), intrinsic gain (AV), cut off frequency (fT), transconductance frequency product (TFP), gain frequency product (GFP) and gain transconductance frequency product (GTFP). The effects of downscaling of channel length (L) on analog performance of the proposed devices have also been presented. It has been observed that the performance enhancement of GS configurations (k=7.5 i.e device D5 in the study) is encouraging as far as the nanoscale DG-MOSFET is concerned. Also it significantly reduces the short channel effects (SCEs). Parameters like DC gain of (91.257 dB, 43.436 dB), nearly ideal values (39.765 V−1, 39.589 V−1) of TGF, an early voltage of (2.73 V, 16.897 V), cutoff frequency (294 GHz, 515.5 GHz) and GTFP of (5.14×105 GHz/V, 1.72×105 GHz/V) for two different values of VDS=0.1 V and 0.5 V respectively are found to be close to ideal values. Analysis shows an opportunity for realizing high performance analog and RF circuits with the device proposed in this paper i.e. device D5.  相似文献   

10.
《Microelectronic Engineering》2007,84(9-10):1968-1971
Charge trapping in ultrathin high-k Gd2O3 dielectric leading to appearance of hysteresis in C-V curves is studied by capacitance-voltage and current-voltage techniques. It was shown that the large leakage current at a negative gate voltage causes the generation of the positive charge in the dielectric layer, resulting in the respective shift of the C-V curve. The capture cross-section of the hole traps is around 2 × 10−20 cm2. The distribution of the interface states was measured by conductance technique showing the concentration up to 7.5 × 1012 eV−1 cm−2 near the valence band edge.  相似文献   

11.
We report on the fabrication and electrical characterization of deep sub-micron (gate length down to 105 nm) GeOI pMOSFETs. The Ge layer obtained by hetero-epitaxy on Si wafers has been transferred using the Smart CutTM process to fabricate 200 mm GeOI wafers with Ge thickness down to 60–80 nm. A full Si MOS compatible pMOSFET process was implemented with HfO2/TiN gate stack. The electrical characterization of the fabricated devices and the systematic analysis of the measured performances (ION, IOFF, transconductance, low field mobility, S, DIBL) demonstrate the potential of pMOSFET on GeOI for advanced technological nodes. The dependence of these parameters have been analyzed with respect to the gate length, showing very good transport properties (μh  250 cm2/V/s, ION = 436 μA/μm for LG = 105 nm), and OFF current densities comparable or better than those reported in the literature.  相似文献   

12.
This paper proposes a method which can separate the parasitic effect from the drain current Id vs. gate voltage Vg curves of MOSFETs, then uses this method to analyze degradation of experimental pMOSFETs due to hot-electron-induced punchthrough (HEIP). An Id vs. Vg curve of the parasitic MOSFET formed by a shallow trench isolation (STI) is obtained by extrapolating the line of Id vs. channel width W at each Vg to W = 0 μm. The Id vs. Vg curves of the parasitic MOSFET indicate that HEIP caused electron trapping at the interface between SiN and the sidewall oxide of STI, but the curves of the main MOSFET indicate that HEIP caused negative oxide charges and positive interface traps in the channel region. These charges and traps decreased the threshold voltage Vth of the parasitic MOSFET but increased Vth of the main MOSFET. These two opposite behaviors of Vth resulted in little HEIP-induced shift of Vth at W = 2.5 μm. | Vd | to secure ten-year HEIP lifetime of 10% shift of Vth was ≤ 2.2 V at W = 0.3 μm, ≤ 3.5 V at W = 1.0 μm, and ≤ 3.6 V at W = 10 μm; these changes indicate that degradation of parasitic MOSFET influences the HEIP lifetime of narrow pMOSFET significantly.  相似文献   

13.
A self-aligned process for fabricating inversion n-channel metal–oxide–semiconductor field-effect-transistors (MOSFET’s) of strained In0.2Ga0.8As on GaAs using TiN as gate metal and Ga2O3(Gd2O3) as high κ gate dielectric has been developed. A MOSFET with a 4 μm gate length and a 100 μm gate width exhibits a drain current of 1.5 mA/mm at Vg = 4 V and Vd = 2 V, a low gate leakage of <10?7 A/cm2 at 1 MV/cm, an extrinsic transconductance of 1.7 mS/mm at Vg = 3 V, Vd = 2 V, and an on/off ratio of ~105 in drain current. For comparison, a TiN/Ga2O3(Gd2O3)/In0.2Ga0.8As MOS diode after rapid thermal annealing (RTA) to high temperatures of 750 °C exhibits excellent electrical and structural performances: a low leakage current density of 10?8–10?9 A/cm2, well-behaved capacitance–voltage (CV) characteristics giving a high dielectric constant of ~16 and a low interfacial density of state of ~(2~6) × 1011 cm?2 eV?1, and an atomically sharp smooth Ga2O3(Gd2O3)/In0.2Ga0.8As interface.  相似文献   

14.
This paper reports the characteristics and reliability of nMOSFETs using the dicing before grinding (DBG) process for substrate transfer. The devices have good uniformity after the substrate transfer procedure. Under the mechanical strain, the longitudinal strain provides greater enhancement than transverse strain for nMOSFETs. The increment rate of saturation current (ID,sat) is decreased and saturated when the gate length is in the sub-micro region. However, the width effect is not clear. Good reliability is obtained after dynamic, static bending strain and hot carrier stress (HCS) under a curvature bending vehicle with a radius of 7.5 mm.  相似文献   

15.
We analyzed the noise characteristics of 0.18 μm and 0.35 μm nMOSFETs with a gate area of 1.1 μm2 in the frequency range of 1 Hz to 100 kHz. Both two- and four-finger devices were investigated and analyzed. The experimental results show that the noise of 0.35 μm gate-length nMOSFET possesses lower 1/f component than the 0.18 μm one, whereas the four-finger devices reveal less 1/f noise than those of with two-finger ones. Furthermore, we used time domain measurement of drain current and also the statistical analysis of wafer level on the random telegraph signals (RTS) tests, and the results showed that RTS noise is higher in devices with a 0.35 μm gate-length, and devices with a smaller gate finger width produce more RTS noise than devices with a larger gate finger width.  相似文献   

16.
Positive voltage instabilities are studied for Nmos transistors with hafnium-based high-κ gate stacks. Using an optimized dedicated fast measurement setup, dynamic transient measurements of drain current are performed over more than ten decades of time. The two main phenomena involved, a reversible one known as hysteresis and a nonreversible one known as PBTI are clearly experimentally separated and studied in detail. A physical model is presented, explaining the dynamic behaviour and leading to precise traps physical characteristics and profiles inside the HfO2 layer. PBTI defects in HfO2 are shown to be of a different nature than hysteresis traps. A turn-around effect is evidenced for PBTI above which physical mechanisms seem to change; it has important implications on lifetime determination methodology. Finally, HfSiON experiments are presented for both hysteresis and PBTI and they show that this material is much less critical than HfO2.  相似文献   

17.
Ultraviolet transfer embossing is optimized to fabricate bottom gate organic thin-film transistors (OTFTs) on flexible plastic substrates, achieving significant improved device performance (μ = 0.01–0.02cm2/Vs; on/off ratio = 104) compared with the top gate OTFTs made previously by the same method (μ = 0.001–0.002 cm2/Vs; on/off ratio = 102). The performance improvement can be ascribed to the reduced roughness of the dielectric-semiconductor interface (Rrms = 0.852 nm) and thermally cross-linked PVP dielectric which leads to reduced gate leakage current and transistor off current in the bottom-gated configuration. This technique brings an alternative great opportunity to the high-volume production of economic printable large-area OTFT-based flexible electronics and sensors.  相似文献   

18.
We have modeled and characterized scaled Metal–Al2O3–Nitride–Oxide–Silicon (MANOS) nonvolatile semiconductor memory (NVSM) devices. The MANOS NVSM transistors are fabricated with a high-K (KA = 9) blocking insulator of ALD deposited Al2O3 (8 nm), a LPCVD silicon nitride film (8 nm) for charge-storage, and a thermally grown tunneling oxide (2.2 nm). A low voltage program (+8 V, 30 μs) and erase (?8 V, 100 ms) provides an initial memory window of 2.7 V and a 1.4 V window at 10 years for an extracted nitride trap density of 6 × 1018 traps/cm3 eV. The devices show excellent endurance with no memory window degradation to 106 write/erase cycles. We have developed a pulse response model of write/erase operations for SONOS-type NVSMs. In this model, we consider the major charge transport mechanisms are band-to-band tunneling and/or trap-assisted tunneling. Electron injection from the inversion layer is treated as the dominant carrier injection for the write operation, while hole injection from the substrate and electron injection from the gate electrode are employed in the erase operation. Meanwhile, electron back tunneling is needed to explain the erase slope of the MANOS devices at low erase voltage operation. Using a numerical method, the pulse response of the threshold voltages is simulated in good agreement with experimental data. In addition, we apply this model to advanced commercial TANOS devices.  相似文献   

19.
In this work, the scalability of alternative channel material double gate nano nMOSFETs has been investigated by the mean of semi-analytical models of Ion/Ioff currents, accounting for quantum capacitance degradation, short channel effects, band-to-band and source-to-drain tunnelling in arbitrary substrate and channel direction.Contrary to most of the previous study neglecting source-to-drain tunnelling, it has been found that for devices with physical gate length below 13 nm (as required in the 22 and 16 nm nodes), this mechanism significantly penalises the Ion/Ioff trade off of small effective masses channel materials like Ge or GaAs, much more than in the case of Si and biaxially strained Si (s-Si). In addition, only strained Si-MOSFETs has been found to meet the performance expectation of the International Technology Roadmap of Semiconductor for the 22 nm and 16 nm technological nodes.  相似文献   

20.
《Microelectronics Reliability》2014,54(11):2378-2382
The degradation of negative bias temperature instability (NBTI) on 28 nm High-K Metal Gate (HKMG) p-MOSFET devices under non-uniform stress condition has been systematically studied. We found the asymmetry between forward and reverse Idsat shift under non-uniform stress condition is significant for long channel devices even under low drain bias stress (e.g., Vds = −0.1 V and gate channel length L = 1 μm), and seems to be dominated by a minimally required critical length (L = 0.2 μm derived from the experimental data). To the authors’ best knowledge, these are new phenomena reported. We attribute these anomalous NBTI characteristics with drain bias to the local self-heating (LSH) activated NBTI degradation mechanism. One semi-empirical analytical model, which fits well with our experimental data, is then proposed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号