首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The aim of this study is to compare the tribological behaviour of novel orthopaedic implant alloy Ti-13Nb-13Zr with that of the standard Ti-6Al-4V ELI alloy, available in four different microstructural conditions produced by variations in the heat treatments. The friction and wear tests were performed by using a block-on-disc tribometer in Ringer’s solution at ambient temperature with a normal load of 20–60 N and sliding speed of 0.26–1.0 m/s. It was found that variations in microstructures produced significant variations in the wear resistance of Ti-6Al-4V ELI alloy. The wear losses of materials solution treated (ST) above the β transus temperature are significantly lower compared with those of materials ST in the (α + β) phase field and are almost insensitive to applied load and sliding speed. Wear loss of the (α + β) ST Ti-6Al-4V ELI alloy continuously increased as applied load was increased and was highest at the highest sliding speed. The Ti-6Al-4V ELI alloy in all microstructural conditions possesses a much better wear resistance than cold-rolled Ti-13Nb-13Zr alloy. Friction results and morphology of worn surfaces showed that the observed behaviour is attributed to the predominant wear damage mechanism.  相似文献   

2.
Fretting wear of Ti-48Al-2Cr-2Nb   总被引:1,自引:0,他引:1  
An investigation was conducted to examine the wear behavior of gamma titanium aluminide (Ti-48Al-2Cr-2Nb in atomic percent) in contact with a typical nickel-base superalloy under repeated microscopic vibratory motion in air at temperatures from 296–823 K. The surface damage observed on the interacting surfaces of both Ti-48Al-2Cr-2Nb and superalloy consisted of fracture pits, oxides, metallic debris, scratches, craters, plastic deformation, and cracks. The Ti-48Al-2Cr-2Nb transferred to the superalloy at all fretting conditions and caused scuffing or galling. The increasing rate of oxidation at elevated temperatures led to a drop in Ti-48Al-2Cr-2Nb wear at 473 K. Mild oxidative wear was observed at 473 K. However, fretting wear increased as the temperature was increased from 473–823 K. At 723 and 823 K, oxide disruption generated cracks, loose wear debris, and pits on the Ti-48Al-2Cr-2Nb wear surface. Ti-48Al-2Cr-2Nb wear generally decreased with increasing fretting frequency. Both increasing slip amplitude and increasing load tended to produce more metallic wear debris, causing severe abrasive wear in the contacting metals.  相似文献   

3.
采用TE66微磨粒磨损实验机对医用Ti-6Al-4V钛合金在不同摩擦副条件下的微磨粒磨损行为进行研究,考察滑行距离、载荷对其微磨粒磨损的影响,通过观察磨斑形貌,分析其磨损机制。研究结果表明:Ti-6Al-4V合金的磨损量随滑移距离和载荷增加而增加,磨损率则相反,并且硬度较高的Si3N4陶瓷球对合金造成的磨损量和磨损率均低于ZrO2陶瓷球;在不同摩擦副条件下,随着滑行距离和载荷的增加,Ti-6Al-4V合金的磨损机制均由三体磨损转变为二三体混合磨损,所不同的是与Si3N4陶瓷球对摩时合金的混合磨损区域要少于与ZrO2陶瓷球对摩时。  相似文献   

4.
The microstructure, mechanical and dry-sliding tribological properties of TiAl-based composites with 20 and 40 vol% in situ formed Ti2AlC, produced by hot press sintering process, are investigated. The microstructural characterization reveals that Ti2AlC phase is in the form of spherical particles and large blocks, and the quantity of the blocks increases with Ti2AlC content. This difference in the morphology and distribution of the Ti2AlC phase leads to the discrepancy of the wear resistance of the composites. In contrast to the Ti-46Al-2Cr-2Nb intermetallics, the dry-sliding wear resistance of the TiAl/Ti2AlC composites first declines slightly and then enhances with the Ti2AlC content. Furthermore, the TiAl/40 % Ti2AlC composite shows low wear rate at higher sliding speed.  相似文献   

5.
Titanium alloys have been of great interest in recent years because of their very attractive combination of high strength, low density and corrosion resistance. Application of these alloys in areas where wear resistance is also of importance calls for thorough investigations of their tribological properties. In this work, Ti–6Al–4V and Ti–24Al–11Nb alloys were subjected to dry sliding wear against hardened-steel counter bodies and their tribological response was investigated. A pin-on-disc type apparatus was used with a normal load of 15–45N and sliding speed of 1.88 ms−1. In the steady state, it was demonstrated that Ti–24Al–11Nb had a substantially higher wear resistance (about 48 times) than that of the Ti–6Al–4V alloy tested under a normal load of 45 N. Severe delamination is found to be responsible for the low wear resistance of Ti-6Al-4V. In the case of Ti–24Al–11Nb, two wear mechanisms have been suggested: delamination with a lower degree of severity and oxidative wear. It is thought that the ability of Ti–24Al–11Nb to form a protective oxide layer during wear results in a much lower wear rate in this alloy.  相似文献   

6.
Pin-on-disk sliding wear studies have been conducted on untreated and ion-implanted UHMWPE against an oxidised Ti-6Al-4V alloy. Under water lubricated conditions no wear was measured. The enhanced mechanical and physical properties of the surface treated materials are responsible for the improved wear performance which may be of great importance to orthopaedic prostheses.  相似文献   

7.
A study has been made of the sliding wear behaviour of untreated and ion implanted ultra high molecular weight polyethylene (UHMWPE) against a surface modified titanium alloy (Ti-6Al-4V) using a pin on disc apparatus. It was found that the presence of water lubrication and a very smooth counterface was necessary to maintain low wear rates of the UHMWPE. A ‘zero wear’ effect was observed when nitrogen implanted UHMWPE was tested against very smooth counterfaces (Ra ≈ 0.03 μm) of either surface oxidized or nitrogen implanted Ti-6Al-4V under water lubrication. The enhanced mechanical and physical properties of the surface treated materials are believed to be responsible for the improved wear performance.  相似文献   

8.
Abstract

The influence of diamond-like carbon (DLC) coating positions—coated flat, coated cylinder, and self-mated coated surface tribopairs—on the fretting behaviors of Ti-6Al-4V were investigated using a fretting wear test rig with a cylinder-on-flat contact. The results indicated that, for tests without coating (Ti-6Al-4V–Ti-6Al-4V contact), the friction (Qmax/P) was high (0.8–1.2), wear volumes were large (0.08–0.1?mm3) under a large displacement amplitude of ±40 µm and small (close to 0) under a small displacement amplitude of ±20 µm, and the wear debris was composed of Ti-6Al-4V flakes and oxidized particles. For tests with the DLC coating, under low load conditions, the DLC coating was not removed or was only partially removed, Qmax/P was low (≤0.2), and the wear volumes were small. Under high load conditions, the coating was entirely removed, Qmax/P was high (0.6–0.8), and the wear volumes were similar to those in tests without coating. The wear debris was composed of DLC particles, Ti-6Al-4V flakes, and oxidized particles. The DLC coating was damaged more severely when deposited on a flat surface than when deposited on a cylindrical surface. The DLC coating was damaged more severely when sliding against a DLC-coated countersurface than when sliding against the Ti-6Al-4V alloy.  相似文献   

9.
Ti/TiB2 multilayers with various modulation ratios were prepared by magnetron sputtering on biomedical titanium alloy Ti6Al4V. The tribological properties of the multilayers sliding against ultra-high molecular weight polyethylene under lubrication with Hank׳s solution were also investigated. The results demonstrated that the tribological properties strongly depended on the modulation ratios of multilayers. The coefficient of friction of multilayers with a modulation ratio of 1:5 was 0.1, a reduction by 28.6%; the wear volume loss of UHMWPE decreased by almost one order of magnitude compared to that of Ti6Al4V alloy, exhibiting excellent anti-friction and anti-wear properties. The oxidation wear of Ti6Al4V alloy could be restrained effectively and converted to abrasion wear and/or adhesive wear by the laminate structures in the multilayers, suggesting that this material may serve as a potential candidate for the surface modification of artificial joints.  相似文献   

10.
Ti-6Al-4V alloy rubbing against aluminum-bronze 630 was evaluated in this work. High velocity oxygen fuel (HVOF) WC-10%Co-4%Cr thermal sprayed and TiN, CrN and DLC physical vapor deposition (PVD) coatings were applied to increase titanium substrate wear resistance. Pin-on-disk tests were performed with a normal force of 5 N and at a speed of 0.5 m/s, with a quantitative comparison between the five conditions studied. Results showed higher wear resistance for Ti-6Al-4V alloy DLC coated and aluminum-bronze 630 tribological pair and that the presence of graphite carbon structure acting as solid lubricant was the main wear preventing mechanism.  相似文献   

11.
A detailed study has been made on the wear behaviour of untreated and plasma nitrided Ti-5Al-2Nb-1Ta orthopaedic alloy against ultra high molecular weight polyethylene (UHMWPE) using pin on disc tribometer under lubricated conditions. The effects of nitriding temperature and nitriding time on the basis of the evolution of the wear volume loss and friction coefficient were investigated. The wear resistance of the plasma nitrided alloys increased considerably when compared to the untreated alloy. The wear debris identified using X-ray diffraction measurements indicated the formation of titanium oxide and titanium oxynitride particles. The wear rate was found to increase with increase in load and sliding velocity.  相似文献   

12.
ABSTRACT

The study of laser cladding of 90Ti-10Al2O3, 90Ti-8Al2O3-2Zn and 90Ti-4Al2O3-6Zn coatings onto Ti-6Al-4V alloy, with intention to produce defect-less, high microhardness and wear resistant coating was carried out. The coatings were deposited onto Ti-6Al-4V alloy at 900 W laser power and 0.6 m/min laser scan speed. Microstructures and phase constituents of the developed coatings were investigated by using a scanning electron microscope (SEM) and X-ray diffractometer correspondingly. Vickers microhardness tester and pin-on-disk tribometer were employed to characterize microhardness and wear behaviour of the Ti-Al2O3/Zn coatings respectively. SEM was also used to examine the worn track. It was observed that 90Ti-10Al2O3 coating yielded optimal microhardness along with maximal wear resistance in comparison to the other coatings and Ti-6Al-4V alloy. It has been established that laser cladding of Ti-Al2O3 coating with Zn contents on Ti-6Al-4V alloy alleviates the formation of cracks, however, microhardness and wear properties are negatively affected.  相似文献   

13.
The tribological behaviour of Fe–28Al–5Cr and its composites containing 15, 25 and 50 wt% TiC (corresponding to 19.3, 31.2 and 57.6 vol%), produced by hot-pressing process, was investigated under liquid paraffine lubrication against an AISI 52100 steel ball in ambient environment at varied applied loads and sliding speeds. It was found that the wear resistance increased and friction coefficient decreased with increasing of TiC content. The coefficients of friction are in the range of 0.09–0.14 at the given testing conditions. The wear rates of all the materials except the 50% composite are on the order of 10−6–10−5 mm3 m−1, the wear rate for the 50% composite is too low to quantify under the two sliding conditions, (50 N, 0.04 m/s) and (100 N, 0.02 m/s). The wear rates of all the materials increase as applied load increases and the increasing extent diminishes with the increase of TiC content, but first increase slightly and then nearly remains steadiness with increasing sliding speed. The 50 wt% composite has wear resistance about 7–20 times better than pure Fe–28Al–5Cr at different sliding parameters. The enhanced wear resistance by TiC addition is attributed to the high hardness of the composites, as well as support of the oil lubrication film/layer by the hard TiC phase. The worn surfaces of all the materials are analyzed by a scanning electron microscope. The dominant wear mechanism of the Fe–28Al–5Cr and 15% composite is grooving and flaking-off, but those of the 25 and 50% composites are mainly shallow grooving.  相似文献   

14.
Laser cladding of ti-6al-4v with bn for improved wear performance   总被引:20,自引:0,他引:20  
P. A. Molian  L. Hualun 《Wear》1989,130(2):337-352
Titanium and its alloys suffer from galling, seizing, ploughing and adhesion during sliding contacts. A laser-cladding method, to enhance the wear performance of titanium, was investigated. A 1.5 kW continuous-wave CO2 gas laser was used to clad hexagonal BN powder with and without the addition of NiCrCoAlY on a Ti-6Al-4V alloy substrate. X-ray diffraction, scanning electron microscopy, optical metallography, and Vickers' micro-hardness tests were employed to characterize the clad layers. A pin-on-block reciprocating wear machine was used to evaluate the sliding wear characteristics of age-hardened, laser surface-melted and laser-clad Ti-6Al-4V alloys. Results indicated that the clad layers consisted of TiN, TiB2, and various alloy phases. Claddings with excellent adhesion and thicknesses up to 600 μm, with a maximum hardness of 1600 HV, were obtained. Wear tests showed a substantial improvement (10–200 times) in wear resistance of claddings over age-hardened and surface-melted layers. The improved wear performance is attributed to the high hardness and low friction properties of clad layers.  相似文献   

15.
The tribological properties of nitrogen implanted Ti-5Al-2Nb-1Ta orthopaedic alloy was studied by performing lubricated pin on disc tests against ultra high molecular weight polyethylene pins. The results were interpreted on the basis of friction coefficient, wear volume loss and by characterising the wear debris to understand the wear mechanism. The results indicated a decrease in wear rate for implanted samples. Detailed investigations of the dose dependence on wear performance were carried out. The friction and wear data show a clear transition in wear modes between implanted and unimplanted alloys. The wear debris confirms the presence of titanium oxide and titanium oxynitride phases for untreated and nitrogen implanted alloy.  相似文献   

16.
The fretting wear behavior of Cu–Al coating was investigated with and without fatigue load under the dry and wet (lubricated) contact conditions. The Cu–Al coating was plasma deposited on titanium alloy, Ti-6Al-4V. Fretting regime was determined from the shape of fretting hysteresis loop. Fretting regime changed from partial slip to total (gross) slip at ∼15 μm of the applied relative displacement, and this transition point was independent of fatigue loading and contact surface (lubricated versus dry) conditions. Wet contact condition reduced frictional force during cycling, as evidenced by the lower-tangential force. Wear analysis using the accumulated dissipated energy approach did not show any effect of contact surface condition. In other words, the relationship between the accumulated dissipated energy and wear volume showed a linear relationship, and it was independent of loading and contact surface conditions, as well as of the fretting regime. Further, the relationship between the wear depth and accumulated dissipated energy did not show any effect of loading and contact surface conditions, as well as of the fretting regime up to instant when the maximum wear depth was equal to the coating thickness. The views expressed in this article are those of the authors and do not reflect the official policy or position of the United State Air Force, Department of Defense, or the U.S. Government.  相似文献   

17.
Ti-6Al-4V alloy is an attractive material in many industries due to its unique and excellent combination of strength to weight ratio and their resistance to corrosion. However, because of its low thermal conductivity and high chemical reactivity, Ti-6Al-4V alloy is generally classified as a difficult-to-cut material that can be characterized by low productivity and rapid tool wear rate even at conventional cutting speeds. It is well known that tool wear has a strong relationship with the cutting forces and a sound knowledge about correlation between cutting forces variation and tool wear propagation is vital to monitor and optimize the automatic manufacturing process. In the present study, high-speed end-milling of Ti-6Al-4V alloy with uncoated cemented tungsten carbide tools under dry cutting conditions is experimentally investigated. The main objective of this work is to analyze the tool wear and the cutting forces variation during high-speed end-milling Ti-6Al-4V alloy. The experimental results show that the major tool wear mechanisms in high-speed end-milling Ti-6Al-4V alloy with uncoated cemented tungsten carbide tools are adhesion and diffusion at the crater wear along with adhesion and abrasion at the flank wear. The cutting force component in the negative y-direction is more dominant of the three components and displays significantly higher magnitudes than that of the other two components in x- and z-directions. The variation of cutting force component F y has a positive correlation with the tool wear propagation, which can be used as a tool wear indicator during automatic manufacturing process.  相似文献   

18.
A range of carbon coatings with different hardness and modulus was compared for wear and frictional behaviours using one-side-carbon-coated Ti-6Al-4V alloy couples tested under conditions of combined impact and sliding contact. Carbon films with hardness over 10 GPa were found to cause far greater volume loss of the uncoated counterpart, and the volume loss was approximately proportional to the extent of hardness deviation above 10 GPa. The coefficient of friction was shown to correlate positively with coating hardness. The tendency of a softer coating to possess a greater sp2 or graphite-like content provides more effective solid lubrication in a wet environment, hence minimising both wear and friction. The corresponding low film modulus also provides an optimal structural integrity of the composite system by minimising the elastic modulus mismatch between the film and the underlying substrate.  相似文献   

19.
The initial stage of oxidation of Ti-47Al-2Nb-2Cr-0.15B and Ti-45Al-15Nb alloys was studied. Studies reveal that the X and NbCr2 phases will form in advance in the transition layer of the 2Nb2Cr alloy compared with the 15Nb alloy. The adherence between the nitride layer and underling layer is good. However, an obvious boundary exists between the mixed layer and the inner layer. The recrystallizing of the base alloy leads to an increase of the volume fraction of grain boundaries that can increase the oxidation rate at the initial oxidation stage. An Nb-based compound forms in the transition layer, which can prevent the formation of X phase.  相似文献   

20.
The tribological properties of the nano-eutectic Fe1.87C0.13 alloy are investigated under liquid paraffine lubrication against AISI52100 steel ball at room temperature with varied applied load and sliding speed. As comparison, the annealed coarse-grained Fe1.87C0.13 alloy is also examined in the same testing condition. The wear rate of the two alloys increases with increasing applied load and sliding speed. The wear resistance of the nano-eutectic Fe1.87C0.13 alloy is about 2–20 times higher than that of the annealed Fe1.87C0.13 alloy at present experimental conditions. The friction coefficients of the two alloys are almost same. The annealed Fe1.87C0.13 alloy shows serious wear under high applied load and sliding speed. The worn surfaces of the two alloys are analyzed by a scanning electron microscope. With increase in the applied load and sliding speed, the wear mechanism of the nano-eutectic Fe1.87C0.13 alloy is transformed from plowing to fatigue flaking pits, whereas that of the annealed coarse-grained Fe1.87C0.13 alloy is transformed from plowing to fatigue flaking pits then to severe fatigue wear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号