首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The purpose of this study was to optimise the incubation conditions for cis-9, trans-11 conjugated linoleic acid (c9, t11 CLA) production by Lactobacillus acidophilus F0221 and evaluate the effect of possible intestinal nutrients on c9, t11 CLA production. Growth in Mann Rogosa Sharp broth supplemented with cysteine and containing 0.5 g L−1 linoleic acid at pH 6.5 with anaerobic incubation at 37 °C for 40 h were found to be the optimal conditions for CLA production. Galactosaccharide, arabinogalactan, galactose and glucose had a higher promoting effect on CLA production (96.19–123.89 μg mL−1) than other carbohydrates. Acetic acid had a higher promoting effect on CLA production (130.98 μg mL−1) than other short chain fatty acids. These results provide detailed parameters for the production of c9, t11 CLA by L. acidophilus F0221 and are valuable for further understanding of c9, t11 CLA formation in the human intestine by this strain.  相似文献   

2.
The aim of the work was to complete data obtained in previous studies with a survey on cis9,trans11 (c9,t11) and trans10,cis12 (t10,c12) conjugated linoleic acid (CLA) content in cheeses collected from Italian large-scale retail trade. This is an integral part of a total study characterising food CLA content, with objective of estimating daily CLA intake of Italian consumers. Among the sampled cheeses (n = 102), Gruyere and Feta (10.21 and 8.50 mg g−1 fat, respectively) had the highest (P < 0.05) c9,t11 contents. Furthermore, cheeses with long-ripening period (>180 d) showed higher c9,t11 values than those with a shorter maturation period. The t10,c12 CLA isomer was almost absent, being detected only in Gruyere, Stracchino, Robiola, Philadelphia and Scamorza, with values up to 0.4 mg g−1 fat. These data improved knowledge about CLA content of dairy products, and this will help make an accurate estimate of CLA ingested by Italian consumers.  相似文献   

3.
Cheeses have been identified as important sources of conjugated linoleic acid (CLA), a mixture of positional and geometric isomers with potential anticarcinogenic activity and other beneficial properties. The objectives of this study were to examine the effects of ripening on the overall CLA content as well as on the isomers profile using GC and Ag+-HPLC. Three Spanish cheeses Protected with Designation of Origin (Mahón, Manchego and Cabrales) were manufactured in different cheesemaking plants and monitored at different times during the ripening period. Total CLA content varied from 3 to 9 mg/g of total fatty acids and rumenic acid (9-cis, 11-trans C18:2, RA) represented more than 75% of total CLA. After RA, 7–9 (cis/trans plus trans/cis), 11-trans, 13-trans and 11-trans, 13-cis C18:2 were the main CLA isomers. The results achieved confirm that the effect of ripening on the total CLA concentration and isomer distribution was negligible.  相似文献   

4.
Dietary supplements of conjugated linoleic acid (CLA) containing trans-10, cis-12 CLA reduce milk fat synthesis in lactating goats. This study investigated effects of milk fat depression induced by dietary CLA supplements on the properties of semi-hard goat cheese. Thirty Alpine does were randomly assigned to 1 of 3 groups and fed diets with lipid-encapsulated CLA that provided trans-10, cis-12 CLA at 0 (control), 3 (CLA-1), and 6 g/d (CLA-2). The experiment was a 3 × 3 Latin square design. Periods were 2 wk in length, each separated by 2-wk periods without CLA supplements. Bulk milk was collected on d 3 and 13 of each of 3 periods for cheese manufacture. The largest decrease (23.2%) in milk fat content, induced by the high dosage (6 g/d per doe) of trans-10, cis-12 CLA supplementation at d 13 of treatment, resulted in decreases of cheese yield and moisture of 10.2 and 10.0%, respectively. Although CLA supplementation increased the hardness, springiness, and chewiness, and decreased the cohesiveness and adhesiveness of cheeses, no obvious defects were detected and no significant differences were found in sensory scores among cheeses. In conclusion, milk fat depression induced by a dietary CLA supplement containing trans-10, cis-12 CLA resulted in changes of fat-to-protein ratio in cheese milk and consequently affected properties of semi-hard goat cheese.  相似文献   

5.
Under certain dietary situations, rumen biohydrogenation results in the production of unique fatty acids that inhibit milk fat synthesis. The first of these to be identified was trans-10, cis-12 conjugated linoleic acid (CLA), but others are postulated to contribute to diet-induced milk fat depression (MFD). Our objective was to examine the potential role of trans-9, cis-11 CLA in the regulation of milk fat. In a preliminary study, we used gas-liquid and high-performance liquid chromatography techniques to examine milk fat samples from a diet-induced MFD study and found that an increase in trans-9, cis-11 CLA corresponded to the decrease in milk fat yield. We investigated this further using a CLA enrichment of 9, 11 isomers to examine the biological effect of trans-9, cis-11 CLA on milk fat synthesis. Four rumen-fistulated Holstein cows were randomly assigned in a 4 × 4 Latin square experiment involving 5-d treatment periods and abomasal infusion of 1) ethanol (control), 2) a 9, 11 CLA mix (containing 32% trans-9, cis-11, 29% cis-9, trans-11, and 17% trans-9, trans-11), 3) a trans-9, trans-11 CLA supplement, and 4) a trans-10, cis-12 CLA supplement (positive control). The trans-9, trans-11 CLA and trans-10, cis-12 CLA supplements were of high purity (>90%), and all supplements were infused at a rate to provide 5 g/d of the CLA isomer of interest. Milk yield and dry matter intake did not differ among treatments. Compared with the control treatment, milk fat yield was reduced by 15% for the 9, 11 CLA mixture and by 27% for the trans-10, cis-12 CLA treatment. We also found that trans-9, trans-11 CLA had no effect on milk fat yield, and previous research has shown that milk fat yield is unaltered when cows are infused with cis-9, trans-11 CLA. When all treatments were considered, results suggested that trans-9, cis-11 was the CLA isomer in the 9, 11 CLA mix responsible for the reduction in milk fat synthesis, although the magnitude was less than that observed for trans-10, cis-12 CLA. Interestingly, trans-9, trans-11 CLA altered the milk fat desaturase index, further demonstrating that alterations in desaturase can occur independently of effects on milk fat synthesis. Overall, our investigations identified that an increase in milk fat content of trans-9, cis-11 CLA was associated with diet-induced MFD and provided evidence of a role for this isomer in MFD based on the 15% reduction in milk fat yield with abomasal infusion of a CLA enrichment that supplied 5 g/d of trans-9, cis-11 CLA.  相似文献   

6.
The aim of this study was to evaluate the effect of different forage:concentrate (FC) ratios in dairy ewe diets supplemented with sunflower oil (SO) on animal performance and milk fatty acid (FA) profile, particularly focusing on trans C18:1 FA and conjugated linoleic acid (CLA). Sixty lactating Assaf ewes were randomly assigned to 6 treatments in a 3 × 2 factorial arrangement: 3 FC ratios (30:70, 50:50, and 70:30) and 2 levels of SO addition (0 and 20 g/kg of dry matter). Both the diet FC ratio and SO supplementation affected milk yield, but differences between treatments were small. Although the proportion of concentrate induced limited changes in milk FA profile, dietary SO significantly decreased saturated FA and enhanced total CLA. Furthermore, the incorporation of SO in ewe diets decreased the atherogenicity index value by about 25% and doubled the contents of potentially healthy FA such as trans-11 C18:1 and cis-9,trans-11 CLA. However, the inclusion of SO in a high-concentrate diet (30:70) could switch linoleic acid biohydrogenation pathways, resulting in a significant increase in trans-10 C18:1, trans-9,cis-11 C18:2, and trans-10,cis-12 C18:2 milk fat percentages.  相似文献   

7.
Twelve lactating Holstein cows were randomly assigned to 1 of 4 experimental diets in a replicated 4 × 4 Latin square design with 4-wk periods to ascertain the lactational response to feeding fish oil (FO), condensed corn distillers solubles (CDS) as a source of extra linoleic acid, or both. Diets contained either no FO or 0.5% FO and either no CDS or 10% CDS in a 2 × 2 factorial arrangement of treatments. Diets were fed as total mixed rations for ad libitum consumption. The forage to concentrate ratio was 55:45 on a dry matter basis for all diets and the diets contained 16.2% crude protein. The ether extract concentrations were 2.86, 3.22, 4.77, and 5.02% for control, FO, CDS, and FOCDS diets, respectively. Inclusion of FO or CDS or both had no effect on dry matter intake, feed efficiency, body weight, and body condition scores compared with diets without FO and CDS, respectively. Yields of milk (33.3 kg/d), energy-corrected milk, protein, lactose, and milk urea N were similar for all diets. Feeding FO and CDS decreased milk fat percentages (3.85, 3.39, 3.33, and 3.12%) and yields compared with diets without FO and CDS. Proportions of trans-11 C18:1 (vaccenic acid), cis-9 trans-11 conjugated linoleic acid (CLA; 0.52, 0.90, 1.11, and 1.52 g/100 g of fatty acids), and trans-10 cis-12 CLA (0.07, 0.14, 0.13, and 0.16 g/100 g of fatty acids) in milk fat were increased by FO and CDS. No interactions were observed between FO and CDS on cis-9 trans-11 CLA although vaccenic acid tended to be higher with the interaction. The addition of CDS to diets increased trans-10 C18:1. Greater ratios of vaccenic acid to cis-9 trans-11 CLA in plasma than in milk fat indicate tissue synthesis of cis-9 trans-11 CLA in the mammary gland from vaccenic acid in cows fed FO or CDS. Feeding fish oil at 0.5% of diet dry matter with a C18:2 n-6 rich source such as CDS increased the milk CLA content but decreased milk fat percentages.  相似文献   

8.
Forty Holstein dairy cows were used to determine the effectiveness of linoleic or linolenic-rich oils to enhance C18:2cis-9, trans-11 conjugated linoleic acid (CLA) and C18:1trans-11 (vaccenic acid; VA) in milk. The experimental design was a complete randomized design for 9 wk with measurements made during the last 6 wk. Cows were fed a basal diet containing 59% forage (control) or a basal diet supplemented with either 4% soybean oil (SO), 4% flaxseed oil (FO), or 2% soybean oil plus 2% flaxseed oil (SFO) on a dry matter basis. Total fatty acids in the diet were 3.27, 7.47, 7.61, and 7.50 g/100 g in control, SO, FO, and SFO diets, respectively. Feed intake, energy-corrected milk (ECM) yield, and ECM produced/kg of feed intake were similar among treatments. The proportions of VA were increased by 318, 105, and 206% in milk fat from cows in the SO, FO, and SFO groups compared with cows in the control group. Similar increases in C18:2cis-9, trans-11 CLA were 273, 150, and 183% in SO, FO, and SFO treatments, respectively. Under similar feeding conditions, oils rich in linoleic acid (soybean oil) were more effective in enhancing VA and C18:2cis-9, trans-11 CLA in milk fat than oils containing linolenic acid (flaxseed oil) in dairy cows fed high-forage diets (59% forage). The effects of mixing linoleic and linolenic acids (50:50) on enhancing VA and C18:2cis-9, trans-11 CLA were additive, but not greater than when fed separately. Increasing the proportion of healthy fatty acids (VA and CLA) by feeding soybean or flaxseed oil would result in milk with higher nutritive and therapeutic value.  相似文献   

9.
Changes in the distribution of conjugated linoleic (CLA) and conjugated linolenic (CLnA) acid isomers in milk from Holstein cows in response to 4 different oilseed supplements rich in either cis-9 18:1 or 18:3n-3 were determined over 2 consecutive lactations in 58 and 35 cows during the first and second years, respectively. For the first 5 wk of the first lactation, all cows were fed the same diet. Thereafter, cows received 1 of 5 treatments for 2 consecutive lactations, including the prepartum period. Treatments comprised the basal diet with no additional lipid, or supplements of extruded linseeds (EL), extruded rapeseeds (ER), cold-pressed fat-rich rapeseed meal, or whole unprocessed rapeseeds to provide 2.5 to 3.0% of additional oil in diet dry matter. During indoor periods, cows were housed and received a mixture (3:1, wt/wt) of grass silage and hay, whereas cows were at pasture during outdoor periods. Over the entire study, EL resulted in the enrichment of ?11,13 CLA, ?12,14 CLA, trans-9,trans-11 CLA, trans-13,trans-15 CLA, ?9,11,15 CLnA, and cis-9,trans-11,trans-13 CLnA (identified for the first time in bovine milk fat) in milk fat, whereas ER and cold-pressed fat-rich rapeseed meal in particular, increased milk fat trans-7,cis-9 CLA concentration. With the exception of the first indoor period, whole unprocessed rapeseeds decreased cis-9,trans-11 CLA, trans-9,cis-11 CLA, and trans-10,trans-12 CLA abundance. During the second indoor period, EL increased milk trans-9,cis-11 CLA and trans-10,cis-12 CLA concentrations, but the increases in cis-9,trans-11 CLA, cis-12,trans-14 CLA, trans-11,cis-13 CLA, and cis-9,trans-11,cis-15 CLnA concentrations to EL and ER were lower for the second than first indoor period. In contrast to the indoor periods, EL and ER decreased milk cis-9,trans-11 CLA, trans-9,cis-11 CLA, and trans-10,cis-12 CLA concentrations at pasture. The extent of changes in the relative distribution and abundance of CLA and CLnA isomers in milk fat were related to the nature (rapeseed or linseed) and form of oilseed (extruded, cold-pressed fat-rich meal or whole unprocessed) supplement and their interactions with the composition of the basal diet (conserved grass or pasture and dietary starch content). Furthermore, milk fat CLA and CLnA responses to treatments were repeatable between both outdoor periods. Variations in milk fat content and yield measured during the entire study were significantly and inversely associated with milk trans-10 18:1, trans-10,cis-12 CLA, and in particular, trans-9,cis-11 CLA concentrations.  相似文献   

10.
Cheeses manufactured using traditional lamb rennet paste, lamb rennet paste containing Lactobacillus acidophilus, and lamb rennet paste containing a mix of Bifidobacterium lactis and Bifidobacterium longum were characterized for the lipolytic pattern during ripening. Lipase activity of lamb rennet paste, lamb rennet containing Lb. acidophilus, and lamb rennet containing a mix of bifidobacteria was measured in sheep milk cream substrate. Rennet paste containing probiotics showed a lipase activity 2-fold greater than that displayed by traditional rennet. Total free fatty acid (FFA) in sheep milk cream was lower in lamb rennet paste (981 μg/g of milk cream) than in lamb rennet containing Lb. acidophilus (1,382.4 μg/g of milk cream) and in lamb rennet containing a mix of bifidobacteria (1,227.5 μg/g of milk cream) according to lipase activity of lamb rennet paste. The major increase of FFA in all cheeses occurred during the first 30 d of ripening with the greatest values being observed for C16:0, C18:0 C18:1. At 60 d of ripening all cheeses showed a reduction in the amount of free fatty acids; in particular, total free fatty acids underwent a decrease of more than 30% from 30 to 60 d in cheeses manufactured using traditional lamb rennet paste, whereas the same parameter decreased 10% in cheeses manufactured using lamb rennet paste containing Lb. acidophilus and cheeses manufactured using lamb rennet paste containing a mix of B. lactis and B. longum. Cheese containing Lb. acidophilus was characterized by the greatest levels of total conjugated linoleic acids (CLA) 9-cis, 11-trans CLA and 9-trans, 11-trans CLA, whereas cheese containing bifidobacteria displayed the greatest levels of free linoleic acid. Rennet pastes containing viable cells of Lb. acidophilus and a mix of B. lactis and B. longum were able to influence the amount of FFA and CLA in Pecorino cheese during ripening.  相似文献   

11.
The effect of yoghurt starter cultures and probiotic Lactobacillus casei on the formation of conjugated linoleic acid (CLA) and microbial populations of fermented goat milk was investigated during 35 days of cold storage. The addition of hydrolysed sunflower oil as a source of free linoleic acid was investigated. The fermentation process enhanced the content of the cis9, trans11‐CLA isomer in milk, whereas the trans10, cis12‐CLA isomer was not detected in goat milk or control fermented milks. The use of both starters generated trans10, cis12‐CLA only when hydrolysed sunflower oil was supplemented. Populations of streptococci and lactobacilli were affected by the presence of hydrolysed sunflower oil.  相似文献   

12.
The aim of the present study was to describe the dietary pattern of a representative sample of 516 adult participants (203 men and 313 women) from Catalonia, a Spanish Mediterranean region, to assess their current dietary and plasma levels of trans C18:1, the major trans-fatty acid (TFA), and cis-9, trans-11 CLA, and trans-10, cis-12 CLA, the two major conjugated linoleic acid (CLA) isomers, and to evaluate their correlation with several cardiovascular disease risk factors. The population was a random sample derived from the Catalan Nutrition Survey. Plasma levels of the CLA isomers were determined in a subsample of 100 volunteers. The Catalan diet seemed to maintain some traits of the ‘traditional’ Mediterranean diet, although other components were lost. The dietary intakes of saturated fatty acids (SFA), TFA, cis-9, trans-11 CLA, and trans-10, cis-12 CLA were 12.3%, 0.84% (2.0 g/d), 0.030% (71.5 mg/d), and 0.0015% (3.4 mg/d) of the energy intake, respectively. Trans C18:1 accounted for 0.19% of the total plasma fatty acids, while the sum of cis-9, trans-11and trans-10, cis-12 CLA isomers represented about 0.09% of the plasma fatty acids. Trans C18:1 isomers correlated significantly with the intake of French fries and pastries, while cis-9, trans-11 CLA significantly correlated with the intake of dairy products and ruminant meat. None of the cardiovascular disease risk factors were found to be associated with the plasma levels of TFA or CLA. The results of this study suggest that monounsaturated fatty acids (MUFA) are the main dietary fat source in the Catalan population, due to their regular olive oil consumption. Moreover, plasma levels of the main TFA and CLA suggest that the Catalan diet is not at present strongly influenced by the occidental dietary patterns. However, a reduction of the intake of SFA in the Catalan population should be recommended.  相似文献   

13.
Bifidobacterium and lactic acid bacteria (LAB), especially from the genera Lactobacillus and Lactococcus, are commonly used in the production of fermented dairy products due to their potential probiotic characteristics. Moreover, some strains of these microorganisms also have the ability to produce conjugated linoleic acid (CLA) from linoleic acid (LA), which has attracted much attention as a novel type of beneficial functional fermented milk. In the present work 22 probiotic bacteria were tested for the production of CLA, using a UV screening method and HPLC techniques. Five microorganisms, two strains of the genera Bifidobacterium, two Lactobacillus and one Lactococcus were selected for their ability to produce CLA after incubation in skim milk with free LA as a substrate. It was possible to quantify the production of CLA (in the range of 40–50 μg CLA/ml) and identify the CLA isomers produced as C18:2 cis 9, trans 11 (60–65%), C18:2 trans 10, cis 12 (30–32%), C18:2 trans 9, trans 11 and C18:2 trans 10, trans 12 (2–5%).  相似文献   

14.
The octadecadienoic conjugated linoleic acid (CLA) isomer with trans-11 and cis-13 double bonds (trans-11,cis-13 CLA) has been described in ruminant milk. For now, this specific CLA is suspected to derive exclusively from ruminal biohydrogenation of dietary α-linolenic acid. However, in rodents, the fatty acid desaturase 3 (FADS3) gene was recently shown to code for an enzyme able to catalyze the unexpected Δ13-desaturation of vaccenic acid, producing a Δ11,13-CLA with all the structural characteristics of the trans-11,cis-13 isomer, although no commercial standard exists for complete conclusive identification. Because the FADS3 gene has already been reported in bovine animals, we hypothesized in the present study that an alternative direct FADS3-catalyzed Δ13-desaturation of vaccenic acid in mammary tissue may therefore co-exist with α-linolenic acid biohydrogenation to explain the final ruminant milk trans-11,cis-13 CLA presence. Here, we first confirm that the FADS3 gene is present in ruminant mammal genomic sequence databases. Second, we demonstrate that the Δ11,13-CLA found in milk fat and the highly probable trans-11,cis-13 CLA isomer produced by rodent FADS3 possess exactly the same structural characteristics. Then, we show that bovine mammary MAC-T and BME-UV epithelial cells express both FADS3 and stearoyl-CoA desaturase 1 (SCD1) mRNA and are able to synthesize both the suspected trans-11,cis-13 CLA and cis-9,trans-11CLA (rumenic acid) isomers when incubated with vaccenic acid. Finally, the concomitant presence of the suspected trans-11,cis-13 CLA isomer with FADS3 mRNA was shown in goat mammary tissue, whereas both were conversely very low or even absent in goat liver. Therefore, this study provides several lines of evidence that, by analogy with rumenic acid, trans-11,cis-13 CLA may originate both from ruminal biohydrogenation and from direct FADS3-catalyzed Δ13-desaturation of vaccenic acid in mammary tissue.  相似文献   

15.
Recent interest in conjugated linoleic acid (CLA) research stems from the well-documented anticarcinogenic, antiatherogenic, antidiabetic, and antiobesity properties of CLA in animal models. The objective of this study was to examine the effects of 2 CLA isomers (cis-9,trans-11 and trans-10,cis-12) on phorbol 12,13-dibutyrate (PDBu)-induced PGF2α production in cultured bovine endometrial (BEND) cells. Confluent BEND cells were incubated in the absence (control) or presence of 100 μM each of linoleic acid, cis-9,trans-11 CLA, or trans-10,cis-12 CLA for 24 h. After incubation, cells were rinsed and then stimulated with PDBu (100 ng/mL) for 6 h. Compared with untreated cells, PDBu stimulated PGF2α secretion (+25-fold) within 6 h. The increases in PGF2α secretion were paralleled by signifi-cant induction of prostaglandin endoperoxide synthase-2 (PGHS-2) mRNA (+63-fold) and protein (+1.6-fold) expression. In spite of stimulatory effects on PGHS-2 and peroxisome proliferator-activated receptor δ (PPARδ) mRNA responses, CLA greatly decreased PGF2α production by PDBu-stimulated BEND cells. There was no evidence for PDBu or CLA modulation of PPARδ protein synthesis in cultured BEND cells. Results indicated that CLA modulation of PGF2α production by BEND cells was not mediated through PGHS-2 or PPARδ gene repression.  相似文献   

16.
The objective of this study was to assess the effect of dietary supplementation of cows on pasture with sunflower oil for conjugated linoleic acid (cis-9, trans-11 CLA) enrichment of milk, for the production of CLA-enriched cheese. A group of 40 autumn-calving dairy cows were assigned to either a control group (indoor feeding on grass silage ad libitum and 6 kg/d of a typical indoor concentrate) or an experimental group (on pasture, being fed 6 kg of a supplement containing 100 g/kg of sunflower oil per d). These diets were fed for 16 d, during which time milk was collected for pilot-scale hard cheese manufacture. The pasture-based diet with sunflower oil resulted in a significant effect on the milk fatty acid CLA content. The concentration of cis-9, trans-11 CLA in the milk produced from cows on this diet increased to 2.22 g/100 g of fatty acid methyl esters (FAME) after 14 d, compared with 0.46 g/100 g of FAME in milk produced on the control indoor diet. The content of cis-9, trans-11 CLA in the cheese manufactured from the indoor control milk was 0.78 g/100 g of FAME and that from the pasture-based sunflower oil milk was 1.93 g/100 g of FAME. The cheese was assessed during the ripening period and CLA concentrations were stable throughout the 6 mo of ripening. Other cheese variables (microbiology, composition, flavor, free AA) were monitored during the ripening period, and the cheese with the elevated CLA concentrations compared favorably with the control cheese. Thus, a pasture-based diet supplemented with an oil source rich in linoleic acid resulted in an enhanced CLA content of bovine milk fat, compared with an indoor grass silage-based diet.  相似文献   

17.
Milk fat depression in cows fed high-grain diets has been related to an increase in the concentration of trans-10 C18:1 and trans-10,cis-12 conjugated linoleic acid (CLA) in milk. These fatty acids (FA) are produced as a result of the alteration in rumen biohydrogenation of dietary unsaturated FA. Because a reduction in ruminal pH is usually observed when high-concentrate diets are fed, the main cause that determines the alteration in the biohydrogenation pathways is not clear. The effect of pH (6.4 vs. 5.6) and dietary forage to concentrate ratios (F:C; 70:30 F:C vs. 30:70 F:C) on rumen microbial fermentation, effluent FA profile, and DNA concentration of bacteria involved in lipolysis and biohydrogenation processes were investigated in a continuous culture trial. The dual-flow continuous culture consisted of 2 periods of 8 d (5 d for adaptation and 3 d for sampling), with a 2 × 2 factorial arrangement of treatments. Samples from solid and liquid mixed effluents were taken for determination of total N, ammonia-N, and volatile fatty acid concentrations, and the remainder of the sample was lyophilized. Dry samples were analyzed for dry matter, ash, neutral and acid detergent fiber, FA, and purine contents. The pH 5.6 reduced organic matter and fiber digestibility, ammonia-N concentration and flow, and crude protein degradation, and increased nonammonia and dietary N flows. The pH 5.6 decreased the flow of C18:0, trans-11 C18:1 and cis-9, trans-11 CLA, and increased the flow of trans-10 C18:1, C18:2n-6, C18:3n-3, trans-11,cis-15 C18:2 and trans-10,cis-12 CLA in the 1 h after feeding effluent. The pH 5.6 reduced Anaerovibrio lipolytica (32.7 vs. 72.1 pg/10 ng of total DNA) and Butyrivibrio fibrisolvens vaccenic acid subgroup (588 vs. 1,394 pg/10 ng of total DNA) DNA concentrations. The high-concentrate diet increased organic matter and fiber digestibility, nonammonia and bacterial N flows, and reduced ammonia-N concentration and flow. The high-concentrate diet reduced trans-11 C18:1 and trans-10 C18:1, and increased C18:2n-6, C18:3n-3 and trans-10,cis-12 CLA proportions in the 1 h after feeding effluent. The increase observed in trans-10,cis-12 CLA proportion in the 1 h after feeding effluent due to the high-concentrate diet was smaller that that observed at pH 5.6. Results indicate that the pH is the main cause of the accumulation of trans-10 C18:1 and trans-10, cis-12 CLA in the effluent, but the trans-10,cis-12 CLA proportion can be also affected by high levels of concentrate in the diet.  相似文献   

18.
Interest has been increasing to enhance the contents of healthy polyunsaturated fatty acid (PUFA) in milk. However, trans fatty acids and conjugated linoleic acid (CLA) can be altered after thermal processing and high pressures disrupt the milk fat globule membrane, exposing the lipid core and helping its oxidation. The objective of the present research was to study whether processing can alter the fatty acid composition of milk and if these changes are affected by PUFA concentration as previous studies suggest. Two cow milk batches (500 L each), one naturally enriched in PUFA, were processed to obtain pasteurized; high temperature, short time; UHT; high pressure; and microwave pasteurized samples. The detailed fatty acid composition was analyzed with special attention to trans fatty acids and CLA isomers. Results showed that after high temperature, short time processing, total CLA content increased in both milk batches, whereas sterilization resulted in a sigmatropic rearrangement of C18:2 cis-9,trans-11 to C18:2 trans-9,trans-11. The extent of these effects was greater in milks naturally enriched in PUFA.  相似文献   

19.
Based on the potential benefits of cis-9, trans-11 conjugated linoleic acid (CLA) for human health, there is a need to develop effective strategies for enhancing milk fat CLA concentrations. Levels of cis-9, trans-11 CLA in milk can be increased by supplements of fish oil (FO) and sunflower oil (SO), but there is considerable variation in the response. Part of this variance may reflect time-dependent ruminal adaptations to high levels of lipid in the diet, which lead to alterations in the formation of specific biohydrogenation intermediates. To test this hypothesis, 16 late lactation Holstein-British Friesian cows were used in a repeated measures randomized block design to examine milk fatty acid composition responses to FO and SO in the diet over a 28-d period. Cows were allocated at random to corn silage-based rations (8 per treatment) containing 0 (control) or 45 g of oil supplement/kg of dry matter consisting (1:2; wt/wt) of FO and SO (FSO), and milk composition was determined on alternate days from d 1. Compared with the control, the FSO diet decreased mean dry matter intake (21.1 vs. 17.9 kg/d), milk fat (47.7 vs. 32.6 g/kg), and protein content (36.1 vs. 33.3 g/kg), but had no effect on milk yield (27.1 vs. 26.4 kg/d). Reductions in milk fat content relative to the FSO diet were associated with increases in milk trans-10 18:1, trans-10, cis-12 CLA, and trans-9, cis-11 CLA concentrations (r2 = 0.74, 0.57, and 0.80, respectively). Compared with the control, the FSO diet reduced milk 4:0 to 18:0 and cis 18:1 content and increased trans 18:1, trans 18:2, cis-9, trans-11 CLA, 20:5 n-3, and 22:6 n-3 concentrations. The FSO diet caused a rapid elevation in milk cis-9, trans-11 CLA content, reaching a maximum of 5.37 g/100 g of fatty acids on d 5, but these increases were transient, declining to 2.35 g/100 g of fatty acids by d 15. They remained relatively constant thereafter. Even though concentrations of trans-11 18:1 followed the same pattern of temporal changes as cis-9, trans-11 CLA, the total trans 18:1 content of FSO milk was unchanged because of the concomitant increases in the concentration of other isomers (Δ4-10 and Δ12-15), predominantely trans-10 18:1. In conclusion, supplementing diets with FSO enhances milk fat cis-9, trans-11 CLA content, but the high level of enrichment declines because of changes in ruminal biohydrogenation that result in trans-10 replacing trans-11 as the major 18:1 biohydrogenation intermediate formed in the rumen.  相似文献   

20.
Five multiparous Finnish Ayrshire cows fed red clover silage-based diets were used in a 5 × 5 Latin square with 21-d experimental periods to evaluate the effects of various plant oils or camelina expeller on animal performance and milk fatty acid composition. Treatments consisted of 5 concentrate supplements containing no additional lipid (control), or 29 g/kg of lipid from rapeseed oil (RO), sunflower-seed oil (SFO), camelina-seed oil (CO), or camelina expeller (CE). Cows were offered red clover silage ad libitum and 12 kg/d of experimental concentrates. Treatments had no effect on silage or total dry matter intake, whole-tract digestibility coefficients, milk yield, or milk composition. Plant oils in the diet decreased short- and medium-chain saturated fatty acid (6:0-16:0) concentrations, including odd- and branched-chain fatty acids and enhanced milk fat 18:0 and 18-carbon unsaturated fatty acid content. Increases in the relative proportions of cis 18:1, trans 18:1, nonconjugated 18:2, conjugated linoleic acid (CLA), and polyunsaturated fatty acids in milk fat were dependent on the fatty acid composition of oils in the diet. Rapeseed oil in the diet was associated with the enrichment of trans 18:1 (Δ4, 6, 7, 8, and 9), cis-9 18:1, and trans-7,cis-9 CLA, SFO resulted in the highest concentrations of trans-5, trans-10, and trans-11 18:1, Δ9,11 CLA, Δ10,12 CLA, and 18:2n-6, whereas CO enhanced trans-13-16 18:1, Δ11,15 18:2, Δ12,15 18:2, cis-9,trans-13 18:2, Δ11,13 CLA, Δ12,14 CLA, Δ13,15 CLA, Δ9,11,15 18:3, and 18:3n-3. Relative to CO, CE resulted in lower 18:0 and cis-9 18:1 concentrations and higher proportions of trans-10 18:1, trans-11 18:1, cis-9,trans-11 CLA, cis-9,trans-13 18:2, and trans-11,cis-15 18:2. Comparison of milk fat composition responses to CO and CE suggest that the biohydrogenation of unsaturated 18-carbon fatty acids to 18:0 in the rumen was less complete for camelina lipid supplied as an expeller than as free oil. In conclusion, moderate amounts of plant oils in diets based on red clover silage had no adverse effects on silage dry matter intake, nutrient digestion, or milk production, but altered milk fat composition, with changes characterized as a decrease in saturated fatty acids, an increase in trans fatty acids, and enrichment of specific unsaturated fatty acids depending on the fatty acid composition of lipid supplements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号