首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The tumor suppressor gene CDKN2A (MTS1/p16), located on chromosome 9p21, is inactivated in a variety of tumors including melanomas and tumors of the biliary tract, pancreas, and stomach. The aim of the present study was to determine whether this gene is inactivated in hepatocellular carcinoma (HCC). Twenty-three primary HCCs and four HCC cell lines were examined. Loss of heterozygosity (LOH) analysis was performed using eight polymorphic markers immediately surrounding CDKN2A, and showed a contiguous region of loss, with the two most commonly deleted markers being D9S1604, located between the p16 and p15 genes, at which 7 of 13 informative tumors (54%) showed loss, and D9S171, with 4 of 14 LOH (29%). Exons 1, 2, and 3 of CDKN2A were amplified by polymerase chain reaction to detect homozygous deletions, and single-strand conformation polymorphism (SSCP) analysis was performed to screen for mutations. No homozygous deletions were detected in any sample. SSCP and sequence analysis showed the same nucleotide change at codon 148 in four tumors. This has been reported elsewhere as a polymorphism. One of these four tumors also contained a mutation at codon 119, resulting in the substitution of an acidic amino acid for a basic one. It is concluded that CDKN2A is infrequently deleted or mutated in HCC. The region of allelic loss upstream from CDKN2A might result in inactivation of regulatory sequences important in the expression of this gene; alternatively, a second tumor suppressor gene may be present in the region 9p21-22, proximal to CDKN2A. These possibilities require further investigation.  相似文献   

2.
We examined the genomic status of cyclin-dependent kinase-4 and -6 inhibitors, p16INK4,p15INK4B, and p18, in 40 primary lung cancers and 31 metastatic lung cancers. Alterations of the p16INK4 gene were detected in 6 (2 insertions and 4 homozygous deletions) of 22 metastatic non-small cell lung cancers (NSCLCs; 27%), but none were detected in 25 primary NSCLCs, 15 primary small cell lung cancers (SCLCs), or 9 metastatic SCLCs, indicating that mutation in the p16INK4 gene is a late event in NSCLC carcinogenesis. Although three intragenic mutations of the p15INK4B gene were detected in 25 primary NSCLCs (12%) and five homozygous deletions of the p15INK4B gene were detected in 22 NSCLCs (23%), no genetic alterations of the p15INK4B gene were found in primary and metastatic SCLCs. The p18 gene was wild type in these 71 lung cancers, except 1 metastatic NSCLC which showed loss of heterozygosity. We also examined alterations of these three genes and expression of p16INK4 in 21 human lung cancer cell lines. Alterations of the p16INK4 and p15INK4B genes were detected in 71% of the NSCLC cell lines (n = 14) and 50% of the NSCLC cell lines (n = 14), respectively, but there were none in the 7 SCLC cell lines studied. No p18 mutations were detected in these 21 cell lines. These results indicate that both p16INK4 and p15INK4B gene mutations are associated with tumor progression of a subset of NSCLC, but not of SCLC, and that p15INK4B mutations might also be an early event in the molecular pathogenesis of a subset of NSCLC.  相似文献   

3.
Allelic loss of chromosome 9p21 is common in small cell lung cancer (SCLC), but inactivation of the tumor suppressor gene CDKN2a is rare, implying the existence of another target gene at 9p21. A recent deletion mapping study of chromosome 9p has also identified a site of deletion in non-small cell lung cancer (NSCLC) centered around D9S126. The Hel-N1 (human elav-like neuronal protein 1) gene encodes a neural-specific RNA binding protein that is expressed in SCLC. We have mapped this potentially important gene in lung tumorigenesis to within 100 kb of the D9S126 marker at chromosome band 9p21 by using homozygously deleted tumor cell lines and fluorescence in situ hybridization to normal metaphase spreads. Hel-N1 is, therefore, a candidate target suppressor gene in both SCLC and NSCLC. We have determined the genomic organization and intron/exon boundaries of Hel-N1 and have screened the entire coding region for mutations by sequencing 14 primary SCLCs and cell lines and 21 primary NSCLCs preselected for localized 9p21 deletion or monosomy of chromosome 9. A homozygous deletion including Hel-N1 and CDKN2a was found in a SCLC cell line, and a single-base polymorphism in exon 2 of Hel-N1 was observed in eight tumors. No somatic mutations of Hel-N1 were found in this panel of lung tumors. Hel-N1 does not appear to be a primary inactivation target of 9p21 deletion in lung cancer.  相似文献   

4.
We analyzed allelic loss at the p53 gene (17p13) and at chromosome region 9p21 in 35 primary head and neck squamous cell carcinomas. Loss of heterozygosity (LOH) at p53 and 9p21 was found in 50 and 75% of informative cases, respectively. LOH at the p53 gene did not increase significantly with tumor stage, but was more frequent in moderately and poorly differentiated tumors than in well-differentiated tumors. LOH plus mutation or homozygous deletion of p53 was limited to advanced stage and poorly differentiated tumors. Allelic loss at 9p21 is frequent in early stage head and neck squamous cell carcinoma and is not significantly associated with LOH at p53. The second exon of the p16/MTS1/CDKN2 gene was found to be homozygously deleted in 1 of 19 cases showing LOH at 9p21, but direct sequencing did not show mutations in the remaining 18 cases. This suggests that p16 plays a limited role in the development of head and neck squamous cell carcinoma.  相似文献   

5.
The identification of homozygous deletions in malignant tissue has been a powerful tool for the localization of tumor suppressor genes. Representational difference analysis (RDA) uses selective hybridization and the PCR to isolate regions of chromosomal loss and has facilitated the identification of tumor suppressor genes such as BRCA2 and PTEN. Twenty RDA clones were generated by comparing genomic DNA from a prostate cancer xenograft to the same patient's normal kidney DNA. Southern blot analysis of the tester and driver and of normal and xenograft DNA, using the differential products as probes, showed the homozygous deletion in 16 of 20 RDA clones. The sequence of one of the differential products overlapped HSU59962, a genomic GenBank sequence on chromosome 12p12-13. Multiplex PCR of the xenograft DNA using polymorphic repeats mapped the deletion to a 1-5-cM region on 12p. Genomic DNA isolated from a panel of cryostat microdissected metastatic prostate adenocarcinomas/normal pairs was screened for loss of heterozygosity using the same polymorphic repeats. Loss of heterozygosity was demonstrated in 9 (47%) of 19 patients. This region may contain, or lie in close proximity to, tumor suppressor genes important in the progression and/or initiation of prostate cancer.  相似文献   

6.
The p15(INK4B), p16(INK4) and p18 genes are members of the gene family coding for inhibitors of cyclin-dependent kinases 4 and 6. p15(INK4B) and p16(INK4) are located at 9p21, a chromosomal region frequently deleted in many human neoplasms. To examine the role of these 3 genes in lung carcinogenesis, somatic mutations within the genes were analyzed by single-strand conformation polymorphism and DNA sequencing in 71 non-small-cell lung cancer (NSCLC) samples. Six somatic mutations in the p16(INK4) gene and 3 cases with a polymorphic allele were observed. Loss of heterozygosity in the p18 gene was found in 1 sample. We did not find any intragenic mutations in the p15(INK4B) or p18 genes. We conclude that p16(INK4) mutations play a role in the formation of some NSCLCs, whereas the involvement of p15(INK4B) and p18 is uncommon.  相似文献   

7.
A potential tumor suppressor gene, STK11 , encoding a serine threonine kinase, has recently been identified on chromosome 19p13. Germ-line mutations of this gene have been found in patients with Peutz-Jeghers syndrome (PJS). To further investigate the relevance of STK11 mutations in PJS, we analyzed its coding sequence in nine patients and identified two deletions and three missense mutations. Because intestinal carcinomas have been observed to develop in association with PJS, we analyzed tumors from 71 patients for allelic deletions (loss of heterozygosity) and STK11 gene mutations, to elucidate the etiological role of STK11 gene in sporadic colorectal cancer. Loss of heterozygosity, evaluated using the microsatellite D19S886, was observed in 10 of 52 informative cases. No somatic mutations were detected except for a missense alteration in one tumor. Our data indicate the heterogeneity of PJS and the infrequent involvement of the STK11 gene in colorectal cancer.  相似文献   

8.
We have screened 57 cases of primary, nonfunctional, pituitary adenomas for loss of heterozygosity of markers on chromosome 9p. Using a panel of 11 microsatellite markers, we found hemizygous deletion with at least one of the markers in 18 tumors (31.5%). The frequency of loss was similar in both noninvasive (8 of 26; 31%) and invasive tumors (10 of 31; 32%), suggesting that loss on this chromosome might be an early event in pituitary tumorigenesis. Two discrete areas of loss were punctuated by a region of retention of heterozygosity between the markers D9S171 and IFNA, indicative of homozygous deletion. However, multiplex PCR analysis (MTS1 and MTS2) and the presence of a 3' untranslated region polymorphism in MTS1 suggested that neither of these tumor suppressor genes was homozygously deleted. In 6 of the 18 tumors showing LOH, sufficient DNA was also available for Southern blot analysis and, in all cases, showed retention of MTS1. Cell mixing experiments of tumor cell DNA homozygously deleted for MTS1 with DNA in which neither copy of the gene was deleted only gave rise to a signal at contamination levels greater than 30% and could discriminate homozygous and hemizygous loss. These studies support the recent findings that mechanisms other than hemi- and homozygous deletion are most likely responsible for the loss of MTS1 gene product in pituitary tumors (M. Woloschak et al., Cancer Res., 56: 2493-2486, 1996.). These data show that losses on either side of 9p21-22, both or either of which may be deleted, are involved in pituitary tumorigenesis and provide evidence for distinct suppressor gene loci, in addition to MTS1, on chromosome 9p.  相似文献   

9.
Mantle cell lymphoma (MCL) is molecularly characterized by bcl-1 rearrangement and cyclin D1 gene overexpression. Some aggressive variants of MCL have been described with blastic or large cell morphology, higher proliferative activity, and shorter survival. The cyclin-dependent kinase inhibitors (CDKIs) p21Waf1 and p16INK4a have been suggested as candidates for tumor-suppressor genes. To determine the role of p21Waf1 and p16INK4a gene alterations in MCLs, we examined the expression, deletions, and mutations of these genes in a series of 24 MCLs, 18 typical, and 6 aggressive variants. Loss of expression and/or deletions of p21Waf1 and p16INK4a genes were detected in 4 (67%) aggressive MCLs but in none of the typical variants. Two aggressive MCLs showed a loss of p16INK4a expression. These cases showed homozygous deletions of p16INK4a gene by Southern blot analysis. An additional aggressive MCL in which expression could not be examined showed a hemizygous 9p12 deletion. Loss of p21Waf1 expression at both protein and mRNA levels was detected in an additional aggressive MCL. No p21Waf1 gene deletions or mutations were found in this case. The p21Waf1 expression in MCLs was independent of p53 mutations. The two cases with p53 mutations showed p21Waf1 and p16INK4a expression whereas the 4 aggressive MCLs with p16INK4a and p21Waf1 gene alterations had a wild-type p53. p21Waf1 and p16INK4a were expressed at mRNA and protein levels in all typical MCLs examined. No gene deletions or point mutations were found in typical variants. Two typical MCLs showed an anomalous single-stranded conformation polymorphism corresponding to the known polymorphisms at codon 148 of p16INK4a gene and codon 31 of p21Waf1 gene. These findings indicate that p21Waf1 and p16INK4a alterations are rare in typical MCLs but the loss of p21Waf1 and p16INK4a expression, and deletions of p16INK4a gene are associated with aggressive variants of MCLs, and they occur in a subset of tumors with a wild-type p53 gene.  相似文献   

10.
Loss of heterozygosity (LOH) on 3p is frequent in human renal cell carcinomas, lung cancers, and breast cancers. To define the region(s) on 3p that harbor presumptive tumor suppressor gene(s) for breast cancer, we examined 196 primary breast tumors for their patterns of LOH at 22 microsatellite marker loci distributed along this chromosome arm. Allelic loss at one or more loci was observed in 101 (52%) of these tumors. Detailed deletion mapping identified two distinct commonly deleted regions; one was localized to a 2-cM interval flanked by D3S1547 and D3S1295 at 3p14.3-21.1, and the other to a 5-cM interval flanked by D3S1286 and D3S1585 at 3p24.3-25.1. The FHIT gene lies in the vicinity of the proximal commonly deleted region. Attempts to correlate LOH on 3p to clinicopathological parameters detected an association with the absence of the progesterone receptor (P = 0.0096). The results suggest that inactivation of unidentified tumor suppressor genes on 3p plays a role in the mechanism whereby hormone dependency is lost in the course of breast carcinogenesis.  相似文献   

11.
Homozygous and hemizygous deletions of 9p21 are the earliest and most common genetic alteration in bladder cancer. The identification of two cell cycle regulators, CDKN2 and CDKN2B, that map to the common region of deletion has prompted the hypothesis that they are critical tumor suppressor genes in this malignancy. However, controversy as to whether these genes are the only or even the most important target in bladder cancer oncogenesis remains. To more clearly determine the effect of these 9p21 alterations, we mapped the homozygous deletions and performed a detailed mutational and expression analysis for CDKN2, CDKN2B and a closely linked gene, methylthioadenoside phosphorylase (MTAP), in 16 established bladder cancer cell lines. Nine of the 16 lines exhibit large (30 to > 2000 kb) homozygous deletions on 9p21. All deletions include at least one exon of CDKN2, eight of nine include CDKN2B, and six of nine include MTAP. MTAP function correlates with the genomic deletions. SSCP and sequence analysis does not reveal any inactivating point mutations of CDKN2 or of CDKN2B in any of the cell lines without homozygous deletions, and all express the CDKN2 and the CDKN2B mRNA as well as the encoded p16 protein. The p16 protein levels vary widely and are correlated with absent pRb expression. We conclude that the 9p21 deletions in bladder cancer usually inactivate the CDKN2. CDKN2B, and MTAP genes but that CDKN2 is the most common target. Other mechanisms for inactivating this gene in bladder cancer appear to be uncommon.  相似文献   

12.
The high incidence of loss of heterozygosity (LOH) on chromosome 18q in advanced non-small cell lung carcinomas indicates the presence of tumor suppressor gene(s) on this chromosome arm, which plays an important role in the acquisition of malignant phenotypes in lung cancers. In the present study, we examined 62 lung cancer specimens and 54 lung cancer cell lines for allelic imbalance at 11 microsatellite loci to define common regions of 18q deletions. Allelic imbalance of 18q was detected in 24 (55.8%) non-small cell lung carcinoma specimens and in 6 (31.6%) small cell lung carcinoma specimens, whereas a similar frequency of LOH was statistically inferred to occur in cell lines by analyzing marker homozygosity as an indirect measure of LOH. Five specimens and 11 cell lines showed partial or interstitial deletions of chromosome 18q, and 2 of them had homozygous deletions at the 18q21.1 region. A commonly deleted region was assigned between the D18S46 and y953G12R loci. The size of this region is less than 1 Mb, and the coding exons of three candidate tumor suppressor genes, Smad2, Smad4, and DCC, were mapped outside the region. This result suggests that the common region harbors a novel tumor suppressor gene involved in the progression of lung cancer.  相似文献   

13.
It is known that nearly 5% of gastric carcinomas arise under the age of 40. To elucidate genetic alterations in these patients, we performed studies using microsatellite assay in 27 gastric cancers under 35 years of age, composed of 5 well and 22 poorly differentiated adenocarcinomas. We detected replication errors (RERs) in 18 (67%) of 27 tumors, but no germline mutation in DNA mismatch repair genes (hMLH1 and hMSH2), except fory 3 somatic mutations in the hMLH1 gene. Loss of heterozygosity (LOH) at D17S855, located on chromosome 17q21 (BRCA1), was detected in 8 (40%) of 20 informative cases. In 12 (44%) of 27 cases, LOH on chromosome 17q12-21 including the BRCA1 was found in several neighboring markers in this region, while no mutation was found in the BRCA1 gene. Four (40%) of 10 scirrhous type gastric cancers exhibited wide allelic deletions on chromosome 17q12-21. These results overall suggest that young gastric cancer patients display highly frequent micro-satellite instability that might be due to defect of DNA repair system rather than hMLH1 and hMSH2. In addition, chromosome 17q12-21 including BRCA1 locus may contain a candidate for tumor suppressor gene, particularly in scirrhous type gastric cancers arising in young patients.  相似文献   

14.
A high incidence of gene mutations or deletions of p16INK4, a cell cycle regulator which inhibits the activity of cyclin-dependent kinase 4/cyclin D complex and blocks the G1-to-S transition, has been reported in pancreato-biliary tract cancers. In order to investigate p16INK4 gene alterations in sporadic ampullary carcinomas, 17 sporadic ampullary carcinomas were examined. After histological diagnosis, DNA samples extracted separately from both cancerous and normal paraffin-embedded tissues were investigated. Loss of heterozygosity (LOH) was investigated utilizing 3 microsatellite markers on 9p21-22, and a mutational analysis was performed by cloning and sequencing. LOH was observed in 3 cases (17.6%) and somatic mutations with retention of heterozygosity were found in 7 cases (41.2%). Of note was that two mutations resulted in truncated incomplete proteins and one was a point mutation at the consensus site in the conserved ankyrin repeats, which would be crucial for function. Although two-hit inactivation was not evident in any of the mutation cases and further investigation would be needed to elucidate the role of altered p16INK4, these results suggest that the p16INK4 gene mutations are relatively frequent and its inactivation might be important in ampullary carcinogenesis.  相似文献   

15.
Frequent losses of heterozygosity observed at several chromosomal loci in primary lung cancers have indicated the existence of several tumor suppressor genes associated with this type of cancer. We have examined loss of heterozygosity on chromosomal arm 8p in 49 cases of non-small cell lung carcinoma, using 14 restriction fragment length polymorphism markers. Of 42 cases informative with at least one marker, 21 showed allelic loss, including 15 of 32 adenocarcinomas and 5 of 9 squamous cell carcinomas. The frequency of allelic loss on 8p was similar at all clinical stages. Deletion mapping defined a single common region of deletion in these tumors within an 8 cM interval at 8p21.3-p22 flanked by the loci defined by cMSR-32 and cC18-245.  相似文献   

16.
17.
Loss of heterozygosity (LOH) of 9p21, which contains the p16INK4a tumor suppressor gene locus, is one of the most frequent genetic abnormalities in human neoplasia, including esophageal adenocarcinomas. Only a minority of Barrett's adenocarcinomas with 9p21 LOH have a somatic mutation in the remaining p16 allele, and none have been found to have homozygous deletions. To determine whether p16 promoter hypermethylation may be an alternative mechanism for p16 inactivation in esophageal adenocarcinomas, we examined the methylation status of the p16 promoter in flow-sorted aneuploid cell populations from 21 patients with premalignant Barrett's epithelium or esophageal adenocarcinoma. Using bisulfite modification, primer-extension preamplification, and methylation-specific PCR, we demonstrate that the methylation assay can be performed on 2 ng of DNA (approximately 275 cells). Eight of 21 patients (38%) had p16 promoter hypermethylation and 9p21 LOH, including 3 patients who had only premalignant Barrett's epithelium. Our data suggest that promoter hypermethylation with LOH is a common mechanism for inactivation of p16 in the pathogenesis of esophageal adenocarcinomas.  相似文献   

18.
The CDKN2 gene that encodes the cell cycle regulatory protein cyclin-dependent kinase-4 inhibitor (p16) has recently been mapped to chromosome 9p21. Frequent homozygous deletions of this gene have been documented in cell lines derived from different types of tumors, including breast tumors, suggesting that CDKN2 is a tumor suppressor gene involved in a wide variety of human cancers. To determine the frequency of CDKN2 mutations in breast carcinomas, we screened 37 primary tumors and 5 established breast tumor cell lines by single-strand conformation polymorphism analysis. In addition, Southern blot analysis was performed on a set of five primary breast carcinoma samples and five breast tumor cell lines. Two of the five tumor cell lines revealed a homozygous deletion of the CDKN2 gene, but no mutations were observed in any of the primary breast carcinomas. These results suggest that the mutation of the CDKN2 gene may not be a critical genetic change in the formation of primary breast carcinoma.  相似文献   

19.
Glioblastoma multiforme (GBM) is the most malignant glial brain tumor in humans. The fact that deleted copies of chromosome 10 are observed frequently in primary GBM tumors supports the hypothesis that one or more tumor suppressor genes located on chromosome 10 occupy crucial growth control checkpoints for glial cells. Deletion mapping in primary GBM tumors using the loss of heterozygosity (LOH) test has implicated the 10q24-10qter region as one possible site for a gene. We report here on the molecular cytogenetic analysis of chromosome 10 abnormalities in a human GBM cell line, JBSA. LOH testing showed that JBSA cells were hemizygous for chromosome 10. Molecular cytogenetic analysis showed that the undeleted homologue was involved in a reciprocal translocation t(7;10)(p21;q22). The translocation breakpoint on chromosome 10 lay within band q22 between D10S19 and D10S4. The fact that JBSA cells lack one homologue of chromosome 10 and carry a translocation breakpoint on the remaining one, proximal to the smallest region of overlap reported in primary tumor deletions, suggests that 10q22 may be another possible site for a tumor suppressor gene involved in GBM.  相似文献   

20.
Meningioma is a common tumor of the central nervous system. Deletions of the short arm of chromosome 1 (1p) are the second most commonly observed chromosomal abnormality in these tumors. Here, we analyzed tumor and normal DNAs from 157 meningioma patients using PCR-based polymorphic loci. Loss of heterozygosity (LOH) for at least one informative marker on 1p was observed in 54 cases (34%), whereas LOH on 1q occurred in only 9 cases (8%). High-resolution deletion mapping defined a consensus region of deletion flanked distally by D1S2713 and proximally by D1S2134, which spans 1.5 cM within 1p32. LOH in this region has also been observed in several other malignancies, suggesting the presence of a tumor suppressor gene or genes that are important for several types of cancer. Statistical analysis revealed that 1p LOH was associated with chromosome 22 deletions and with abnormalities of the NF2 gene in meningioma. In addition, unlike other clinical and molecular characteristics, only 1p LOH was shown to be significantly associated with recurrence-free survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号