首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
使用DYS-2500高温高压岩石三轴试验机对钢纤维再生混凝土圆柱体进行了单轴压缩和常规三轴压缩试验研究。结果表明,钢纤维再生混凝土在单轴压缩和三轴压缩下的破坏形态有所差别;同一围压下,钢纤维再生混凝土随着钢纤维掺量的增加,试件能承受的主压应力及轴向应变也相应增加,且围压下的应力-应变曲线走势大体一致;相同掺量钢纤维再生混凝土,随着围压值的提高,其承受的主压应力、轴向应变也相应提高;围压15MPa时,钢纤维再生混凝土的峰值应力约是单轴压缩下峰值应力的3.08~4.13倍;同一围压下的纤维再生混凝土,钢纤维掺量2%的峰值应力约是普通再生混凝土峰值应力的1.15~1.54倍;围压15MPa时钢纤维再生混凝土的峰值应变比0MPa时的峰值应变增加了5.98~6.76倍;同一围压下的再生混凝土,钢纤维掺量2%的峰值应变约是普通再生混凝土峰值应变的1.22~1.52倍。  相似文献   

2.
为研究钢-聚丙烯混杂纤维超高性能混凝土(HF-UHPC)的力学性能尺寸效应规律,考虑纤维参数的影响,对不同尺寸HF-UHPC试件开展立方体抗压强度和轴心受压力学性能试验.结果表明:随着钢纤维掺量和钢纤维长径比的增加,试件立方体抗压强度、轴心抗压强度和轴心受压峰值应变的尺寸效应更加显著;随着聚丙烯纤维掺量的增加,试件立方体抗压强度、轴心抗压强度和轴心受压峰值应变的尺寸效应变化幅度较小,呈现先减后增趋势;试件弹性模量的尺寸效应受混杂纤维参数影响很小,可忽略不计.此外,基于试验结果揭示了试件抗压强度尺寸效应产生机理,并建立了试件抗压强度尺寸效应律参数的计算公式,可用于不同尺寸试件的抗压强度计算.  相似文献   

3.
借助正交试验方法,研究了钢、聚丙烯、玄武岩等纤维及纤维掺量对三元混杂纤维混凝土(SPBHFRC)轴心抗压强度、轴压韧性及轴压破坏形态的影响,并筛选出轴压性能最优的纤维组合;结合轴压荷载-变形曲线、应力-应变曲线对混杂纤维混凝土变形过程进行详细描述,并对轴压应力-应变曲线进行数学拟合。研究表明,钢纤维含量是影响混杂纤维混凝土轴心受压性能的关键因素;钢纤维体积掺量为2%,聚丙烯体积掺量为0.1%,玄武岩体积掺量为0.2%时,混杂纤维混凝土试件在破坏时的轴压韧性较好,可为实际工程设计和选材提供参考;基于过镇海~[9]提出的分段式本构方程能准确拟合出SPB-HFRC轴心受压应力-应变曲线,可为纤维混凝土的非线性有限元分析提供可靠的计算依据。  相似文献   

4.
通过对不掺硅灰的新型超高性能混凝土的单轴压缩和单轴拉伸试验研究,获得了UHPC轴压应力-应变曲线和轴拉荷载-位移曲线。试验表明相比普通混凝土,UHPC轴压应力-应变曲线具有较长的线性段,UHPC具有良好的受压变形性能;UHPC开裂后裂缝间的钢纤维开始发挥作用,轴拉应力随裂缝宽度的增大和钢纤维的拔出而逐渐减小。基于试验并结合已有研究成果,建立了UHPC单轴受压和单轴受拉的本构方程,可供设计参考。  相似文献   

5.
在混杂纤维总体积掺量为2%的条件下,改变钢纤维、聚丙烯纤维和聚乙烯醇纤维的体积掺量,设计制作了两类混杂纤维水泥基试块,通过轴心受压试验,分别研究钢-聚丙烯和聚乙烯醇-聚丙烯混杂纤维水泥基复合材料的轴心受压应力-应变关系,并提出了不同纤维掺量变化对峰值应力、峰值应变影响的计算式。结果表明:钢纤维和聚乙烯醇纤维能提高试块的抗压强度,聚丙烯纤维能显著提高试块的峰值应变,当聚丙烯纤维体积掺量大于0. 5%时,混杂纤维水泥基复合材料的抗压强度会低于基体。  相似文献   

6.
通过306个150mm×150mm×300mm纤维纳米混凝土棱柱体试块在25~800℃后的单轴受压试验,探讨钢纤维体积率、纳米材料掺量和高温对纤维纳米混凝土受压应力-应变曲线的影响。结果表明,纤维纳米混凝土受压应力-应变曲线可分为弹性阶段、裂缝稳定发展阶段、裂缝失稳扩展阶段和破坏阶段;随钢纤维体积率和纳米材料掺量的增大,应力-应变曲线逐渐饱满,峰值应力和峰值应变均有一定程度的提高,曲线下包面积逐渐增大;随温度升高,应力-应变曲线趋于扁平,弹性段逐渐变短,峰值应力显著降低,峰值应变增大,应力-应变曲线下包面积减小。通过对试验数据的综合分析,建立了考虑纤维、纳米材料和温度影响的纤维纳米混凝土轴压应力-应变曲线数学模型。  相似文献   

7.
考虑聚丙烯纤维体积掺量和长径比两个因素,设计制作54个混凝土试件,通过单轴循环加载试验,研究聚丙烯纤维混凝土的力学行为。试验结果表明:与普通混凝土相比,聚丙烯纤维混凝土试件破坏形态为延性破坏;其循环受压应力-应变曲线包络线与单调受压应力-应变关系曲线近似一致;聚丙烯纤维的掺入可显著改善混凝土的循环受压力学行为,提高混凝土的受压韧性、峰后延性和滞回耗能能力,减小其刚度退化和应力劣化程度,但对其峰值强度、弹性模量和塑性应变影响较小;聚丙烯纤维掺量影响较纤维长径比影响更为明显。基于试验结果,参考《混凝土结构设计规范》(GB 50010-2010),建立聚丙烯纤维混凝土单轴受压弹塑性损伤本构模型,可为聚丙烯纤维混凝土结构设计、工程应用和相关规程修订提供理论依据。  相似文献   

8.
钢纤维混凝土三轴压缩下的强度和韧度特性   总被引:1,自引:1,他引:0  
当围压分别为10,20,40,80MPa时,对纤维体积分数φf为0%,0.75%,1.50%,3.00%的钢纤维混凝土进行了3×10-5,5×10-4 s-1两种应变率的常规三轴压缩试验,测出了全过程应力-应变曲线,并据此分析了纤维体积分数、围压和应变率对试验曲线的峰值应力、峰值应变及材料韧度等力学指标的影响规律.结果表明:当围压相同而φf不同时,随着φf的提高,材料的峰值应力和峰值应变均明显提高,其韧度也有所提高;当围压不同而φf相同时,随着围压的增加,材料的强度和韧度都有所提高.而且,在较低围压下往素混凝土里添加钢纤维更能够发挥其增强和增韧效果;随着加载应变率的增加,材料的峰值应力、峰值应变也有一定的增大趋势.  相似文献   

9.
通过纤维纳米混凝土棱柱体试件在25~800℃高温中的单轴受压试验,研究了温度、钢纤维体积率、纳米二氧化硅和纳米碳酸钙掺量对纤维纳米混凝土高温中轴压性能的影响。结果表明,随温度升高,纤维纳米混凝土峰值应力和初始弹性模量显著降低,峰值应变明显增大;随钢纤维体积率增大,高温中纤维纳米混凝土峰值应力和峰值应变不断提高,初始弹性模量有所下降;随纳米材料掺量增加,高温中纤维纳米混凝土峰值应力、峰值应变和初始弹性模量均呈增大的趋势,纳米二氧化硅的效果好于纳米碳酸钙。在分析试验结果的基础上,提出了考虑温度、纤维和纳米材料影响的高温中纤维纳米混凝土峰值应力、峰值应变和初始弹性模量的计算公式以及高温中纤维纳米混凝土单轴受压应力-应变关系式。  相似文献   

10.
《工业建筑》2021,51(2):26-31
为研究高强箍筋约束超高性能混凝土(UHPC)方形短柱的轴压承载力计算方法,对9根箍筋约束UHPC方形短柱进行了轴压试验,并结合所收集相关文献数据,在Richart破坏准则的基础上给出了约束UHPC峰值应力计算式,建议了适用于UHPC强度为130~180 MPa、钢纤维体积掺率为1.5%~2%、体积配箍率为1.5%~5.5%的高强箍筋约束UHPC方形短柱的轴压承载力算式,并与中、美设计标准进行对比。结果表明:建立的考虑钢纤维桥联作用及箍筋约束提高作用的承载力算式,其计算值与试验值吻合度较高,按GB50010—2010《混凝土结构设计规范》预测的约束UHPC承载力比ACI 318-2014《混凝土结构建筑规范要求》保守; UHPC柱拟配置600 MPa以上高强箍筋,以提高约束效果;非螺旋式箍筋约束UHPC方形短柱的箍筋间距上限值可按GB 50010—2010取值。  相似文献   

11.
通过常规三轴受压强度和变形特性试验,研究了围压以及PVA纤维掺量对高性能PVA纤维增强水泥基复合材料(HPFRCC)受压性能的影响.结果表明:随着围压的增加,HPFRCC的轴向极限抗压强度以及峰值应变均显著提高;PVA纤维掺量对HPFRCC抗压强度的影响较小,在低围压受力状态下使用PVA纤维增强HPFRCC要比在高围压受力状态下更能发挥纤维的增强阻裂作用,而且PVA纤维掺量对应力-应变曲线下降段也有一定影响.根据试验数据建立了HPFRCC的轴向极限抗压强度、轴向峰值应变与围压之间的关系.  相似文献   

12.
考虑聚丙烯纤维体积掺量和长径比两因素,设计制作了7组混凝土试件,通过单轴受压应力-应变全曲线试验,研究了聚丙烯纤维对混凝土力学行为的影响。采用声发射信号采集系统同步监测混凝土内部损伤演化过程,分析了聚丙烯纤维混凝土单轴受压损伤机理。结果表明,聚丙烯纤维显著改善了混凝土的峰后延性和抗压韧性。混凝土试件贯通裂缝形成时,声发射撞击数突增,应力迅速下降,损伤发展较快。随着纤维体积掺量增加,试件声发射累计撞击数逐渐增大;纤维长径比为280时,声发射累计撞击数最大。聚丙烯纤维混凝土破坏时剪切裂纹所占裂纹总数比重较大,试件呈现剪切破坏形态。  相似文献   

13.
根据水化反应方程和紧密堆积理论确定了常温养护下超高性能混凝土(UHPC)的基础配合比,基于此考虑水胶比和钢纤维掺量设计了8组UHPC抗弯试件。通过四点弯曲试验,分析了试件的受弯破坏形态、荷载-挠度曲线、弯拉特征参数和弯曲韧性等;基于试验结果采用倒推方法得到了UHPC轴拉应力-应变曲线,采用回归分析提出了考虑纤维特征的轴拉本构模型,并经过材料和构件两个层次的验证。结果表明:掺加钢纤维可抑制主裂缝的发展,从而明显改善UHPC的抗弯韧性,钢纤维掺量为2.0%的UHPC弯曲韧性指数达到116.9 J;随着水胶比增大,试件抗折强度和峰值挠度均呈下降趋势;增大钢纤维掺量明显提升了试件弯曲性能,掺入2.0%钢纤维的UHPC与未掺纤维相比,其初裂挠度和抗折强度分别提升157.14%和148.63%;当纤维含量为1.5%~2.0%时,试件具有良好的弯拉性能;水胶比对曲线平台段趋势影响不大,纤维掺量大于1.0%时曲线具有较明显的应变硬化特征,可保证UHPC良好的抗拉性能,其应变硬化特征随着纤维掺量增大而变得更明显;所提模型对UHPC受拉应力-应变关系具有较好的预测性。  相似文献   

14.
将钢纤维和玄武岩纤维混掺制备纤维混杂高性能水泥基复合材料,通过压缩试验研究了钢纤维、玄武岩纤维、混杂纤维掺量等因素对试件抗压性能的影响。结果表明,玄武岩纤维有效控制了裂缝的产生,显著提高了峰值压应力和峰值压应变;钢纤维有效控制了裂缝的发展,显著提高了峰值压应力后试件的变形能力;2.0%混杂纤维较1.0%混杂纤维抗压性能更优,峰值压应力和峰值压应变分别提高5.76%和6.74%。  相似文献   

15.
以再生粗骨料取代率、侧向围压值、时间龄期、再生骨料来源和混凝土强度等级为变化参数,设计68个试件进行三轴受压试验研究,观察了三轴受压状态下再生混凝土的破坏形态,揭示了其破坏机理,获取了三轴受压时的应力-应变全过程曲线、峰值应力、峰值应变、弹性模量等特征点参数。研究结果表明:随着围压值的增大,再生混凝土的破坏形态由垂直劈裂转变为斜向劈裂破坏,且与斜向劈裂面相交的粗骨料被剪断;单轴受压和侧向围压值σw≤9MPa时,再生混凝土发生脆性破坏;围压值σw≥12MPa时,再生混凝土为塑性状态破坏。最后,基于试验分析和普通混凝土的强度理论,分别采用莫尔-库仑破坏准则、π平面剪应力破坏准则以及Rendulic平面上的应力破坏准则从宏观的角度对再生混凝土材料的强度准则进行深入分析,并探讨了多轴应力状态下再生混凝土的应力-应变本构方程。研究结果可供再生混凝土的进一步研究和推广应用提供参考。  相似文献   

16.
为研究短龄期再生混凝土的三轴受压力学性能,以龄期和围压值为变量,设计了14个圆柱体再生混凝土试件进行三轴受压试验,观察其破坏形态,获取应力-应变曲线、峰值应力、峰值应变以及弹性模量等数据.基于试验数据分析了龄期和围压值对再生混凝土三轴受压力学性能的影响规律,建立了短龄期再生混凝土三轴受压的峰值应力、峰值应变和弹性模量的计算公式,并建立了再生混凝土三轴受压状态下的应力-应变本构方程.结果表明:短龄期再生混凝土的峰值应变、弹性模量受龄期影响较大,随着龄期的延长,峰值应变减小,而弹性模量却显著增大;围压值对再生混凝土的峰值应力、峰值应变和弹性模量均有显著影响.采用CEB-FIP(1990)规范中方法计算的再生混凝土三轴抗压强度值与实测值吻合较好.  相似文献   

17.
基于传统UHPC制备技术,优化原材料组分和配合比,配制出强度等级为120MPa的机制砂UHPC,开展不同材料掺量与配比对机制砂UHPC轴拉性能试验研究。结果表明:钢纤维的掺入能较好地约束机制砂UHPC变形和内部微裂纹的扩展,提高抵抗开裂能力和增强抗拉强度和拉伸应变,效果随钢纤维体积率的增加而逐渐增强,但在钢纤维掺量超过2%后增幅明显趋缓;机制砂UHPC抗拉性能随水胶比的增大呈先增大后减小的趋势,在水胶比0.18时,其抗拉强度和峰值应变最大分别为9.7MPa、2745.6με;适当增加机制砂UHPC中部分粗颗粒质量分数和石粉的掺量可以提高机制砂UHPC的抗拉性能。根据上述结果,机制砂UHPC的优选配合比设计为水胶比0.18,细度模数3.0,石粉含量5%,钢纤维体积掺量2%,可为后续机制砂UHPC力学性能深入研究与推广应用提供参考。  相似文献   

18.
对钢纤维掺量(体积分数,下同)为0%,1%,2%和4%的4种活性粉末混凝土(RPC),在较长龄期(3a)时进行单轴压缩试验,得到其轴向、径向应力-应变全曲线及轴应力-体应变曲线,并对以上曲线进行分析.结果表明:钢纤维活性粉末混凝土(SFRPC)峰值强度随钢纤维掺量的增加几乎呈线性增加,当钢纤维掺量为4%时,其圆柱体试件(Ф50×100mm)峰值强度可达218MPa;轴向峰值应变及平均泊松比随钢纤维掺量的增加而增加;钢纤维掺量为0%的素RPC弹性模量最大,钢纤维掺量为1%,2%和4%的SFRPC弹性模量相当;素RPC表现为劈裂破坏,钢纤维掺量为1%的SFRPC表现为单剪切破坏,而钢纤维掺量为4%的SFRPC表现为X形剪切破坏.  相似文献   

19.
采用未经淡化处理的海砂配制超高性能混凝土(UHPC)对于岛礁建筑具有重要意义。通过水泥胶砂的力学性能和流动度试验确定了海砂UHPC的基准配合比,研究了钢纤维和PVA纤维对海砂UHPC力学性能和流动度的影响。试验结果表明:随着钢纤维体积掺量的增加,海砂UHPC的抗压和抗折强度提高,综合考虑力学性能和经济性,钢纤维最优体积掺量为1.5%。当钢纤维体积掺量为1.0%时,PVA纤维等体积完全取代钢纤维对抗压强度影响不大,抗折强度降低22.5%;当钢纤维体积掺量为1.5%时,混杂体积掺量0.75%以内的PVA纤维对抗压和抗折强度的影响不大,但流动性明显降低。  相似文献   

20.
预应力超高性能混凝土(UHPC)结构具有轻型化、跨度大等优点,为了探明其锚固区的受力性能,以钢纤维长径比、局压面积比与钢纤维掺量为变量,开展了18个带中心孔道的UHPC棱柱体试件的局压试验,得到了局压承载力以及荷载-位移关系。试验结果表明:UHPC试件局压开裂荷载一般为局压极限荷载的45%~78%,局压破坏之前有较长的裂缝发展过程;局压受力可分为压密、弹性变形、外围混凝土及其与楔形体界面的裂缝发展、破坏四个阶段;钢纤维长径比分别为65与80的两组UHPC试件局压承载力、局压刚度相差均较小;UHPC试件弹性变形阶段核心混凝土竖向柔度和相对压陷的竖向柔度随局压面积减小而增大;当钢纤维掺量分别从1%增至2%和2%增至3%时,UHPC试件局压承载力增幅达12.9%~14.4%和5.3%~7.4%,局压刚度亦随纤维掺量增加而增加。UHPC局压承载力的计算仍可采用普通混凝土局压承载力公式的形式,但相关系数取值有所不同;按该文给出的方法取值,计算值与试验结果吻合较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号