首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
This paper presents analytical and experimental investigations for fatigue lives of structures under uniaxial, torsional, multiaxial proportional, and non‐proportional loading conditions. It is known that the rotation of principal stress/strain axes and material additional hardening due to non‐proportionality of cycle loading are the 2 main causes resulting in shorter fatigue lives compared with those under proportional loading. This paper treats these 2 causes as independent factors influencing multiaxial fatigue damage and proposes a new non‐proportional influencing parameter to consider their combined effects on the fatigue lives of structures. A critical plane model for multiaxial fatigue lives prediction is also proposed by using the proposed non‐proportional influencing factor to modify the Fatemi‐Socie model. The comparison between experiment results and theoretical evaluation shows that the proposed model can effectively predict the fatigue life due to multiaxial non‐proportional loading.  相似文献   

2.
In engineering practice, it is generally accepted that most of components are subjected to multiaxial stress‐strain state. To analyse this complicated loading state, different types of specimens of 2A12 (2124 in the United States) aluminium alloy were tested under multiaxial loading conditions and a new multiaxial fatigue analysis method for the state of three‐dimensional stress and strain is proposed. Elastic‐plastic finite element method (FEM) and a proposed vector computing method are used to describe the loading state at the critical point of specimen, by which the parameter ΓT is calculated at the new defined subcritical plane to consider the effect of additional cyclic hardening. Meanwhile, the principal equivalent strain is still calculated at the traditional critical plane. The new damage parameter is composed of different process parameters, by which the dynamic path of strain state, including loading environments and material properties, are fully considered in one loading cycle. According to experimental verifications with 2A12 aluminium alloy, the results show that the proposed method shows satisfactory, accurate, and reliable results for multiaxial fatigue life prediction in the state of three‐dimensional stress and strain.  相似文献   

3.
In real engineering components and structures, many accidental failures are due to unexpected or additional loadings, such as additional bending or torsion, etc. Fractographical analyses of the failure surface and the crack orientation are helpful for identifying the effects of the non‐proportional multi‐axial loading. There are many factors that influence fatigue crack paths. This paper studies the effects of multi‐axial loading path on the crack path. Two kinds of materials were studied and compared in this paper: AISI 303 stainless steel and 42CrMo4 steel. Experiments were conducted in a biaxial testing machine INSTRON 8800. Six different biaxial loading paths were selected and applied in the tests to observe the effects of multi‐axial loading paths on the additional hardening, fatigue life and the crack propagation orientation. Fractographic analyses of the plane orientations of crack initiation and propagation were carried out by optical microscope and SEM approaches. It was shown that the two materials studied had different crack orientations under the same loading path, due to their different cyclic plasticity behaviour and different sensitivity to non‐proportional loading. Theoretical predictions of the damage plane were made using the critical plane approaches such as the Brown–Miller, the Findley, the Wang–Brown, the Fatemi–Socie, the Smith–Watson–Topper and the Liu's criteria. Comparisons of the predicted orientation of the damage plane with the experimental observations show that the critical plane models give satisfactory predictions for the orientations of early crack growth of the 42CrMo4 steel, but less accurate predictions were obtained for the AISI 303 stainless steel. This observation appears to show that the applicability of the fatigue models is dependent on the material type and multi‐axial microstructure characteristics.  相似文献   

4.
This paper proposed a simple life prediction model for assessing fatigue lives of metallic materials subjected to multiaxial low‐cycle fatigue (LCF) loading. This proposed model consists of the maximum shear strain range, the normal strain range and the maximum normal stress on the maximum shear strain range plane. Additional cyclic hardening developed during non‐proportional loading is included in the normal stress and strain terms. A computer‐based procedure for multiaxial fatigue life prediction incorporating critical plane damage parameters is presented as well. The accuracy and reliability of the proposed model are systematically checked by using about 300 test data through testing nine kinds of material under both zero and non‐zero mean stress multiaxial loading paths.  相似文献   

5.
A new critical plane‐energy model is proposed in this paper for multiaxial fatigue life prediction of metals. A brief review of existing methods, especially on the critical plane‐based and energy‐based methods, is given first. Special focus is on the Liu–Mahadevan critical plane approach, which has been shown to work for both brittle and ductile metals. One potential drawback of the Liu–Mahadevan model is that it needs an empirical calibration parameter for non‐proportional multiaxial loadings because only the strain terms are used and the out‐of‐phase hardening cannot be explicitly considered. An energy‐based model using the Liu–Mahadevan concept is proposed with the help of the Mróz–Garud plasticity model. Thus, the empirical calibration for non‐proportional loading is not needed because the out‐of‐phase hardening is naturally included in the stress calculation. The model predictions are compared with experimental data from open literature, and the proposed model is shown to work for both proportional and non‐proportional multiaxial loadings without the empirical calibration.  相似文献   

6.
A new calculation approach is suggested to the fatigue life evaluation of notched specimens under multiaxial variable amplitude loading. Within this suggested approach, if the computed uniaxial fatigue damage by the pure torsional loading path is larger than that by the axial tension–compression loading path, a shear strain‐based multiaxial fatigue damage parameter is assigned to calculate multiaxial fatigue damage; otherwise, an axial strain‐based multiaxial fatigue damage parameter is assigned to calculate multiaxial fatigue damage. Furthermore, the presented method employs shear strain‐based and axial strain‐based multiaxial fatigue damage parameters in substitution of equivalent strain amplitude to consider the influence of nonproportional additional hardening. The experimental data of GH4169 superalloy and 7050‐T7451 aluminium alloy notched components are used to illustrate the presented multiaxial fatigue lifetime estimation approach for notched components, and the results reveal that estimations are accurate.  相似文献   

7.
Low‐cycle fatigue data of type 304 stainless steel obtained under axial‐torsional loading of variable amplitudes are analyzed using four multiaxial fatigue parameters: SWT, KBM, FS and LKN. Rainflow cycle counting and Morrow's plastic work interaction rule are used to calculate fatigue damage. The performance of a fatigue model is dependent on the fatigue parameter, the critical plane and the damage accumulation rule employed in the model. The conservatism and non‐conservatism of predicted lives are examined for some combinations of these variables. A new critical plane called the weight function‐critical plane is introduced for variable amplitude loading. This approach is found to improve the KBM‐based life predictions.  相似文献   

8.
For engineering components subjected to multiaxial loading, fatigue life prediction is crucial for guaranteeing their structural security and economic feasibility. In this respect, energy‐based models, integrating the stress and strain components, are widely used because of their availability in fatigue prediction. Through employing the plastic strain energy concept and critical plane approach, a new energy‐based model is proposed in this paper to evaluate the low‐cycle fatigue life, in which the critical plane is defined as the maximum damage plane. In the proposed model, a newly defined NP factor κ*  is used to quantify the nonproportional (NP) effect so that the damage parameter can be conveniently calculated. Moreover, a simple estimation method of weight coefficient is developed, which can reflect different contributions of shear and normal plastic strain energy on total fatigue damage. Experimental data of 10 kinds of materials are employed to assess the effectiveness of this model as well as three other energy‐based models.  相似文献   

9.
在多轴交变应力作用下,由于非比例循环附加强化效应导致疲劳寿命降低。针对这一问题,以薄壁圆管疲劳试件为研究对象,在分析临界平面上剪应变和正应变随相位角变化特征的基础上,引入了一个新的有效循环变量———临界平面上的等效应力,提出了一种新的多轴疲劳预测模型。新的损伤参量不含经验常数,便于工程实际的运用。通过和铝合金7075-T651多轴疲劳实验数据比较,结果表明,所提出的多轴寿命预测模型具有更好的预测精度,适用于比例与非比例加载条件。  相似文献   

10.
This paper presents a probabilistic fatigue crack growth life prediction methodology for spot‐welded joints under variable amplitude loading history. The loading is multi‐axial and is obtained from transient response analysis of a vehicle model using finite‐element analysis. A three‐dimensional (3D) finite element model of a simplified joint with four spot welds is developed, and the static stress analysis of this joint is performed. Then the fatigue crack inside the base material sheet is modelled as a surface crack. Probabilistic crack growth model is combined with the stress analysis result to develop a probabilistic fatigue crack growth life prediction methodology for spot welds. This new method is implemented with MSC/NASTRAN and MSC/FATIGUE and is useful for the reliability assessment of spot‐welded joints against fatigue crack growth.  相似文献   

11.
From the literature concerning the traditional nonproportional (NP) multiaxial cyclic fatigue prediction, special attentions are usually paid to multiaxial constitutive relations to quantify fatigue damage accumulation. As a result, estimation of NP hardening effect decided by the entire history path is always proposed, which is a challenging and complex task. To simplify the procedure of multiaxial fatigue life prediction of engineering components, in this paper, a novel effective energy parameter based on simple material properties is proposed. The parameter combines uniaxial cyclic plastic work and NP hardening effects. The fatigue life has been assessed based on traditional multiaxial fatigue criterion and the proposed parameter, which has been validated by experimental results of 316 L stainless steel under different low‐cycle loading paths.  相似文献   

12.
In this paper, based on the process of the fatigue crack initiation and the critical plane theory, a continuous stress parameter was proposed to quantify the driving force of the fatigue crack initiation for the fully reversed multiaxial fatigue loading. In this stress parameter, the shear stress amplitude and normal stress amplitude on the critical plane were combined with the variable coefficients which were affected by the normalized fatigue life and the loading non‐proportionality. Owing to these coefficients, for the multiaxial loadings with different non‐proportionalities, the driving force of the fatigue crack initiation during the whole life could be described. After that, a novel accumulative fatigue damage model was established for the multiaxial two‐stage step spectrum. In this model, the accumulative damage was calculated according to the variation of the proposed stress parameter on the critical plane. Considering the directionality of the multiaxial fatigue damage, for the spectrum in which the loading path was variable, the damage accumulation was carried out on the critical planes of the both loadings, and the larger one was chosen as the final accumulative fatigue damage. In order to verify the new model, up to 41 different multiaxial two‐stage step spectrum loading tests on 2024‐T4 aluminium alloy were collected. The new model, as well as other five commonly used models, was applied to calculate the accumulative fatigue damage. The final results showed that, compared with other commonly used models, the new model had the most accurate results with the smallest scatters.  相似文献   

13.
This study investigates the effects of shot peening on the low‐cycle fatigue performance of a low‐pressure steam turbine blade material. The finite element model incorporating shot‐peening effects, which has been introduced in part I, has been used to predict the stabilised stress/strain state in shot‐peened samples during fatigue loading. The application of this model has been extended to different notched geometries in this study. Based on the modelling results, both the Smith–Watson–Topper and Fatemi–Socie critical plane fatigue criteria have been used to predict the fatigue life of shot‐peened samples (treated with two different peening intensities) with varying notched geometries. A good agreement between experiments and predictions was obtained. The application of a critical distance method considering the stress and strain hardening gradients near the shot‐peened surface has been found to improve the life prediction results. The effects of surface defects on the accuracy of life predictions using the proposed method were also discussed.  相似文献   

14.
Based on Wang and Brown's reversal counting method, a new approach to the determination of the critical plane is proposed by the defined plane with a weight‐averaged maximum shear strain range under multiaxial variable amplitude loading. According to the determined critical plane, a detailed procedure of multiaxial fatigue life prediction is introduced to predict lives in the low‐cycle multiaxial fatigue regime. The proposed approach is verified by two multiaxial fatigue damage models and Miner's linear cumulative damage law. The results showed that the proposed approach can effectively predict the orientation of the failure plane under multiaxial variable amplitude loading and give a satisfactory life prediction.  相似文献   

15.
A path‐dependent cycle counting method is proposed by applying the distance formula between two points on the tension‐shear equivalent strain plane for the identified half‐cycles first. The Shang–Wang multiaxial fatigue damage model for an identified half‐cycle and Miner's linear accumulation damage rule are used to calculate cumulative fatigue damage. Therefore, a multiaxial fatigue life prediction procedure is presented to predict conveniently fatigue life under a given tension and torsion random loading time history. The proposed method is evaluated by experimental data from tests on cylindrical thin‐walled tubes specimens of En15R steel subjected to combined tension/torsion random loading, and the prediction results of the proposed method are compared with those of the Wang–Brown method. The results showed that both methods provided satisfactory prediction.  相似文献   

16.
A fatigue damage model to assess the development of subsurface fatigue cracks in railway wheels is presented in this paper. A 3‐dimensional finite element model (FEM) is constructed to simulate repeated cycles of contact loading between a railway wheel and a rail. The computational approach includes a hard‐contact over‐closure relationship and an elastoplastic material model with isotropic and kinematic hardening. Results from the simulation are used in a multiaxial critical‐plane fatigue damage analysis. The employed strain‐based critical‐plane fatigue damage approach is based on Fatemi‐Socie fatigue index that takes into account the non‐proportional and out‐of‐phase nature of the multiaxial state of stress occurs when a railway wheel rolls on a rail. It predicts fatigue‐induced micro‐crack nucleation at a depth of about 3.7 mm beneath the wheel tread, as well as the crack plane growth orientation which indicates the possible failure pattern. Additionally, the influence of various factors such as contribution of normal stresses, higher wheel load, and material model have been investigated.  相似文献   

17.
18.
A new computational methodology is proposed for fatigue life prediction of notched components subjected to variable amplitude multiaxial loading. In the proposed methodology, an estimation method of non‐proportionality factor (F) proposed by authors in the case of constant amplitude multiaxial loading is extended and applied to variable amplitude multiaxial loading by using Wang‐Brown's reversal counting approach. The pseudo stress correction method integrated with linear elastic finite element analysis is utilized to calculate the local elastic‐plastic stress and strain responses at the notch root. For whole local strain history, the plane with weight‐averaged maximum shear strain range is defined as the critical plane in this study. Based on the defined critical plane, a multiaxial fatigue damage model combined with Miner's linear cumulative damage law is used to predict fatigue life. The experimentally obtained fatigue data for 7050‐T7451 aluminium alloy notched shaft specimens under constant and variable amplitude multiaxial loadings are used to verify the proposed methodology and equivalent strain‐based methodology. The results show that the proposed methodology is superior to equivalent strain‐based methodology.  相似文献   

19.
In this paper, the shortcomings of the Smith–Watson–Topper (SWT) damage parameter are analysed on the basis of the critical plane concept. It is found that the SWT model usually overestimates the fatigue lives of materials since it only takes into account the fatigue damage caused by the tensile components. To solve this problem, Chen et al. (CXH) modified the SWT model through considering the shear components. However, there are at least two problems present in CXH model: (1) the mean stress is not considered and (2) the different influence of the normal and shear components on fatigue life is not included. Besides, experimental validations show that the modification by Chen et al. usually leads to conservative fatigue life predictions during non‐proportional loading. In order to overcome the shortcomings of SWT and CXH models, a damage parameter as the effective strain energy density (ESED) is proposed. Experimental validations by using eight kinds of materials show that the ESED model can give satisfactory fatigue life predictions under the non‐proportional loading.  相似文献   

20.
Multiaxial low cycle fatigue tests under non-proportional stress (NPSS) controlled mode were performed on commercial pure titanium (CP-Ti). Strain responses of axial and torsional channels under highly applied stress amplitudes show an initial hardening phenomenon. Non-proportional hardening coefficient of CP-Ti is independent of the controlled mode. The critical plane of CP-Ti under NPSS controlled mode is aligned with the maximum principal stress plane proved by optical microscopy observation. Optimized FSM model and KBM-PM model with mean axial and torsional strain are established. These models are further integrated into equations related to multiaxial stress ratio with high accuracy of life prediction for CP-Ti under NPSS controlled mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号