首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
为改进酚醛固化环氧树脂复合材料的性能,合成了邻甲苯酚醛树脂(o-CFR)、邻甲酚醛环氧树脂(o-CFER)和氧化石墨烯(GO),制备了o-CFR/o-CFER/GO玻璃钢复合材料,研究了不同含量的氧化石墨烯对复合材料物理力学性能的影响。结果表明,GO加入可以改善材料的力学性能、耐热性能和电绝缘性能。当酚醛与环氧质量比为4∶6,材料中加入1.2%的GO时,起始分解温度(Tid)提高了91℃,复合材料的拉伸强度和冲击强度分别提高了102%和86%;加入2.0%时材料玻璃化转变温度(Tg)可提高19℃。  相似文献   

2.
以第3代环氧端基脂肪族超支化聚酯(EHBP)增韧的环氧树脂(E-51)为基体材料,超支化聚酯基二茂铁(HBPE-Fc)为吸波剂,制备具有一定力学承载及电磁性能的超支化聚酯基二茂铁/环氧树脂(HBPE-Fc/E-51)复合材料,并通过力学性能测试及扫描电镜、矢量网络分析仪等研究了该复合材料的力学及电磁性能。结果表明,添加较低含量的HBPE-Fc能较好地改善环氧树脂体系的拉伸及冲击性能,第4代HBPE-Fc质量分数为2%时,与纯环氧树脂体系相比,HBPE-Fc/E-51复合材料的拉伸强度、断裂伸长率和冲击强度分别提高了21.81%、34.32%和15.41%,对固化体系的拉伸断面分析发现引入HBPE-Fc后材料表现出韧性断裂。HBPE-Fc/E-51复合材料的玻璃化转变温度在105.29~130.27 ℃之间,具有良好的热稳定性,同时该复合材料具有一定的电磁特性。  相似文献   

3.
石墨烯/环氧树脂复合材料的制备与力学性能   总被引:1,自引:0,他引:1  
通过对氧化石墨热膨胀还原并用超声分散制备了石墨烯,并对所得产物进行分析表征。用超声分散和模具浇注成型法制备了石墨烯/环氧树脂纳米复合材料。研究了石墨烯含量对石墨烯/环氧树脂复合材料力学性能和断面形貌的影响,分析了石墨烯对环氧树脂的增强机理。结果表明,随着石墨烯含量的增加,石墨烯/环氧树脂复合材料的拉伸强度及模量先增加后减小;当石墨烯的质量分数为0.1%时,复合材料的拉伸强度达到最大值60.9MPa,比纯环氧树脂提高了16.88%;当石墨烯的质量分数为0.5%时,复合材料的拉伸模量达到最大值2833.3MPa,比纯环氧树脂提高了48.29%。  相似文献   

4.
黄伟九  赵远  王选伦 《功能材料》2012,43(24):3484-3488
采用氧化石墨烯还原法制备了石墨烯,通过溶液共混法制备了石墨烯增强聚酰亚胺复合材料;研究了石墨烯/聚酰亚胺复合材料的力学和摩擦学性能及摩擦学作用机制。结果表明,随着石墨烯含量增加,复合材料的拉伸强度、断裂伸长率和硬度均呈先上升后下降的趋势,而冲击强度呈先升高而后降低,再升高的趋势。当添加1.0%(质量分数)的石墨烯时,复合材料的拉伸强度和断裂伸长率达到最大值,分别比纯聚酰亚胺提高了149%和652%。石墨烯的加入显著降低了聚酰亚胺复合材料的摩擦系数和磨损率;随石墨烯含量增加,复合材料的磨损率先下降后上升,而摩擦系数先显著降低,尔后平缓减小。随载荷增加,复合材料的磨损率呈平缓下降的趋势;而随滑动速率增加,磨损率呈上升趋势。石墨烯增强的聚酰亚胺复合材料的磨损机理为粘着磨损。  相似文献   

5.
对多壁碳管(MWCNTs)进行改性处理得到酸化碳管(MWCNTs-COOH)和环氧化碳管(MWCNTs-Epon828), 将石墨烯(Graphene)与不同的碳管分别混合, 制备出三种Graphene-MWCNTs/环氧树脂(EP)复合材料。通过拉伸和热重实验研究了石墨烯与MWCNTs的协同作用、 两者的含量以及MWCNTs功能化方法对复合材料力学和热学性能的影响。结果表明: 石墨烯与MWCNTs的协同增强明显优于MWCNTs单独增强。当石墨烯和MWCNTs质量分数仅为0.1%时, Graphene-MWCNTs-Epon828/EP的拉伸强度达最大值, 其拉伸强度、 弹性模量和断裂伸长率分别较纯EP增加了35%、 65%和34%。石墨烯和MWCNTs的加入使Graphene-MWCNTs/EP复合材料的热稳定性均有所提高。  相似文献   

6.
分别通过超声共混法和原位还原法制备了石墨烯/环氧树脂复合材料。利用X射线光电子能谱(XPS)、X射线衍射(XRD)、光学显微镜和扫描电子显微镜(SEM)对复合材料的结构进行了表征,并对其力学性能进行了测试。结果表明,原位还原法制备的石墨烯/环氧树脂复合材料中,氧化石墨烯已经被成功地还原为石墨烯,并且石墨烯具有良好的分散性。力学性能测试结果表明,两种方法制备的复合材料的力学强度较纯环氧树脂明显提高。当石墨烯的量为m(GO)/m(EP)=0.3/100时,超声混合法制备的石墨烯/环氧树脂复合材料的拉伸强度和弯曲强度分别最大提高约29.2%和1.4%;而原位还原法制备的石墨烯/环氧树脂复合材料的拉伸强度和弯曲强度分别最大提高约40.5%和9.4%。  相似文献   

7.
为了改善炭纤维/环氧树脂复合材料的界面性能,以对硝基苯胺为原料,通过两步重氮化还原反应,在炭纤维表面共价接枝氧化石墨烯,制备出氧化石墨烯/炭纤维(GO/CF)复合增强体。研究了反应机理,并对改性前后炭纤维表面的化学结构、微观形貌、表面粗糙度、单丝拉伸强度和炭纤维/环氧树脂复合材料的界面性能等进行了测试分析。结果表明,接枝GO后,炭纤维表面粗糙度增加了188%,单丝拉伸强度提高了13. 2%,断裂伸长率增加12. 1%,界面黏结强度提高了80. 2%。  相似文献   

8.
以环氧树脂、二乙醇胺为原料制备阳离子型环氧乳液,然后与氧化石墨烯充分混合形成共混分散液,加热固化得氧化石墨烯改性环氧树脂(GO/EP)涂层。其表面官能团结构、表面形貌分别通过傅里叶红外光谱仪(FT-IR)和扫描显微镜(SEM)进行表征,湿润性、热稳定性、力学性能分别通过接触角测试仪、热失重仪(TGA)和微机电子万能试验机进行测试。结果表明,氧化石墨烯加入环氧树脂基体中后涂层材料的力学性能较纯环氧树脂明显提高,其拉伸强度、断裂伸长率以及弹性模量最大提高率分别为69.2%,62.8%和22.8%。  相似文献   

9.
采用机械共混法制备了石墨烯(GNS)/室温硫化硅橡胶(RTV)复合材料。用扫描电镜(SEM)、透射电镜(TEM)、红外光谱(FT-IR)、拉曼光谱(Raman)和X射线衍射(XRD)对GNS的微观结构以及GNS在RTV硅橡胶基体中的分布情况进行了表征和分析,同时研究了GNS/RTV硅橡胶复合材料的力学性能。结果表明,石墨烯在基体硅橡胶中的分布较均匀,极少出现团聚现象;随着填料石墨烯含量的增加,复合材料的拉伸模量逐渐增大,拉伸强度和断裂伸长率均出现极大值后渐渐减少;当石墨烯的质量分数为0.925%时,复合材料的拉伸强度和断裂伸长率均达最大值,分别为0.8387MPa和195.78%,比纯RTV硅橡胶提高了159.86%和55.32%;此时拉伸模量比纯RTV硅橡胶提高了157.44%。  相似文献   

10.
采用化学氧化还原法和超声分散制备出石墨烯(GN),采用X射线衍射仪、红外光谱和原子力显微镜对所得石墨烯进行了分析和表征。结果表明,氧化石墨烯被较好地还原为石墨烯并且成功分散为纳米级厚度;采用溶液超声共混法制备石墨烯/硅丙乳液复合材料。对复合材料成膜进行扫描电镜表征、热重分析、导电渗流测试、力学性能以及耐水、耐腐蚀性测试,发现复合材料具有较低的渗滤阈值(质量分数0.5%),石墨烯用量大于0.9%时,体积电阻率基本稳定在103Ω·cm以下,导电性有了明显提高;石墨烯的用量为0.7%时,与硅丙乳液相比,复合材料拉伸强度提高了15.5%,断裂伸长率下降了3.6%,耐水性提高了14%,失重5%时的热分解温度提高了43℃,耐腐蚀性能也得到了极大提高。  相似文献   

11.
为了制备拉伸和弯曲性能良好的聚丙烯腈基预氧丝毡/环氧树脂复合材料,研究了聚丙烯腈基预氧丝毡含量和固化温度对复合材料拉伸和弯曲性能的影响,优化出力学性能最佳的聚丙烯腈基预氧丝毡/环氧树脂复合材料制备方法,并拍摄了复合材料拉伸断口的SEM图像.研究表明:当聚丙烯腈基预氧丝毡含量为15%时,其纵向和横向的拉伸断裂载荷达到最大值,分别为1 643.73和1 235.72 MPa;同时纵向和横向弯曲强度也达到最大值,分别为64.39和53.06 MPa;复合材料的SEM图像显示,纵向拉伸断口处有少量裸露纤维,其分布方向与针刺毡铺网方向一致.  相似文献   

12.
微胶囊对微胶囊/环氧树脂复合材料增韧作用   总被引:1,自引:0,他引:1  
使用脲醛(Urea-formaldehyde)树脂-环氧树脂微胶囊(E-51)和三聚氰胺-尿素-甲醛共缩聚树脂 (Melamine-urea-formaldehyde)-环氧树脂微胶囊(E-51)制备微胶囊/环氧树脂复合材料样品。对其力学性能进行了测试, 并对复合材料的断面形貌进行了观察, 研究了微胶囊对微胶囊/环氧树脂复合材料力学性能的影响。结果表明: 随着微胶囊用量的增加, 复合材料拉伸强度和弯曲强度有所降低; 微胶囊质量分数小于2%时, 复合材料断裂伸长率和断裂弯曲应变有所提高; 大于2%时复合材料断裂伸长率和断裂弯曲应变下降。微胶囊对环氧树脂有增韧效果, 微胶囊表面越粗糙, 粒径越小, 增韧效果越明显。在裂纹扩展区, 大部分微胶囊破裂, 裂纹终止区, 大部分微胶囊剥离。   相似文献   

13.
为了提高环氧树脂的低温力学性能,采用石墨烯与多壁碳纳米管(MWCNTs)协同改性环氧树脂,系统研究了石墨烯-MWCNTs/环氧树脂复合材料的室温(RT)和低温(77K)力学性能。结果表明:当石墨烯的质量分数为0.1wt%,MWCNTs的质量分数为0.5wt%时,纳米填料的加入可同时改善环氧树脂的低温拉伸强度、弹性模量和冲击强度;在此最佳含量下,石墨烯-MWCNTs/环氧树脂复合材料在RT和77K时的拉伸强度皆达到最大值,比纯环氧树脂的拉伸强度分别提高了11.04%和43.78%。石墨烯和MWCNTs能协同提高环氧树脂的低温力学性能。  相似文献   

14.
石墨烯微片对尼龙6的改性研究   总被引:1,自引:0,他引:1  
张灵英  陈国华 《材料导报》2011,25(14):85-88,92
采用共混法制备尼龙6/石墨烯微片(GNPs)复合材料,研究了其导电性能、摩擦磨损性能及力学性能,并利用扫描电镜观察分析了材料磨损表面形貌,同时将其结果与炭黑(CB)体系进行了比较。结果表明,PA6/GPNs的渗滤阀值为15%(质量分数,下同),远低于PA6/CB的30%;GNPs的加入降低了材料的摩擦系数和磨损率,并在其含量为10%时达到最佳,分别降低30%和50%;提高了材料的拉伸强度、断裂伸长率、硬度,但冲击强度下降。CB的加入提高了材料的耐磨性、硬度,但摩擦性能、拉伸强度、断裂伸长率和冲击强度均下降。  相似文献   

15.
通过超声辅助机械分散技术制备了环氧/埃洛石纳米管与环氧/埃洛石纳米管/液体橡胶复合材料,借助差示扫描量热仪、拉伸测试和扫描电镜等手段研究了其固化行为、拉伸性能和断面形貌。结果表明:埃洛石纳米管及柔性橡胶在环氧树脂中呈均匀的分散状态;埃洛石纳米管使环氧树脂的拉伸强度和模量增加,断裂伸长率降低;柔性橡胶/埃洛石纳米管按比例复配可平衡环氧树脂的强度、模量和韧性。  相似文献   

16.
根据GB/T 3362-2005选用环氧树脂E44和E51两种常用固化体系,测试了不同规格碳纤维的拉伸性能。结果表明:在胶液种类、胶液浓度、固化温度、固化张力、含胶量、加载速率和应变限等制样和拉伸测试条件一定的前提下,拉伸性能的测试数据仍然在一定范围内波动,分析其原因认为是碳纤维复杂的制备工艺导致其产品性能存在波动;当固化时间不小于30min树脂完全固化时,固化体系种类与固化时间对碳纤维拉伸性能测试结果的影响较小;两种树脂固化体系得到的拉伸性能数据具有一定的可比性;碳纤维属于脆性材料,用测得的拉伸强度与模量依据虎克定律推算得到断裂伸长率的方法合理可行。  相似文献   

17.
石墨烯/SiO2杂化材料增强增韧环氧树脂基复合材料   总被引:1,自引:1,他引:0  
采用原位接枝法制备得到三维结构的石墨烯/SiO2杂化材料,用透射电镜对杂化材料的表观形貌进行表征,同时对二氧化硅的粒径进行表征。利用环氧树脂固化工艺制备复合材料样条,将不同比例(0.1%、0.3%、0.5%)的杂化材料添加到树脂中制备树脂基复合材料,利用万能强力仪测试样条的拉伸性能,利用扫描电镜对样条的断截面进行扫描,研究不同比例的杂化材料对树脂增强增韧效果的影响,并得到最佳的添加比例。再以最佳添加比例将石墨烯、SiO2、杂化材料分别添加到树脂中制备树脂基复合材料,研究不同种类的填料对树脂基复合材料的增强增韧效果。结合拉伸测试结果和断截面扫描结果分析可以得到,杂化材料的添加量为0.3%时,对树脂基复合材料的增强增韧效果最佳;且杂化材料对树脂的增强增韧效果要明显优于单独添加石墨烯和二氧化硅。  相似文献   

18.
以膨胀石墨(100mesh)为原料,采用改进的水热法,经超声剥离制备了氧化石墨烯(GO)。通过X射线衍射、原子力显微镜及傅里叶变换红外光谱对GO结构进行表征,进而采用两相萃取法将制得的GO萃取到环氧树脂(EP)基体中。利用X射线衍射、扫描电镜等对GO/EP复合材料的断面形貌及GO在树脂中的分散状况进行表征,并进行了力学性能测试及动态力学分析。结果表明,GO厚度约为1.4nm,复合材料的力学性能较纯环氧明显提高,GO的加入使环氧树脂冲击断面转变为塑性断裂。当GO加入量为0.25%(质量分数)时,材料的冲击强度最高,强度值为55.17kJ/m2,提高了115%;拉伸强度提高了18%;断裂伸长率增加了78%。经动态力学分析可推断,GO的加入增强了其与环氧树脂间的界面粘接性,同时影响到环氧树脂聚合网络的形成。改性后的环氧树脂韧性大幅度增加。  相似文献   

19.
《功能材料》2021,52(7)
以环氧树脂E51作为基质材料,纳米纤维素(CNF)作为掺杂材料,采用混溶法制备了一系列不同CNF掺量(0%,0.3%,0.6%和0.9%(质量分数))的环氧树脂复合材料。通过FT-IR、SEM和力学性能测试等方法分析了复合材料的结构、形貌和力学性能。结果表明,掺杂CNF的环氧树脂复合材料体系均已无丙酮存在,且CNF已成功掺入了环氧树脂复合材料中。随着CNF的掺入,环氧树脂复合材料的冲击强度、抗拉强度、弹性模量和延伸率均呈现先增大后降低的趋势,且整体均高于纯环氧树脂材料。当CNF的掺量为0.6%(质量分数)时,复合材料的冲击强度、抗拉强度、延伸率和弹性模量均达到最大值,分别为29.5 kJ/m~2,87 MPa, 5.8%和2 846 MPa;当CNF的掺量过高时,复合材料的冲击强度、抗拉强度、延伸率和弹性模量均有所下降。未掺杂CNF的纯环氧树脂材料的断面较为光滑平整,断面的断裂方向整体一致,断裂方式为脆性断裂;当掺入CNF后,复合材料的断面均较为粗糙,并且断面的断裂方向变得不均匀和多元化,断裂方式为韧性断裂。  相似文献   

20.
采用TG、DSC和万能材料试验机对聚酰亚胺纤维浸胶复丝拉伸性测试方法进行了研究。考察了不同测试条件下,聚酰亚胺纤维拉伸强度、表观拉伸弹性模量和断裂伸长率的变化规律。研究结果表明,聚酰亚胺纤维的拉伸性能样品制备条件有很大关系,影响因素包括含胶量、固化张力和胶液种类。含胶量低于40%时,纤维力学性能比正常值低。制样时施加适当的固化张力可得到较高的拉伸性能。对比环氧E51和E44两种树脂两种固化体系,采用E51的拉伸强度和断裂伸长率更大。加载速率低于80mm/min时,其对拉伸性能几乎没有影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号