首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
在传统的波导耦合微波等离子体化学气相沉积装置中引入双基片结构,测量了金刚石沉积过程中的等离子体发射光谱,通过与单基片结构对比,比较研究了双基片对微波等离子体参数的影响。研究表明:在相同金刚石沉积参数下,双基片结构相比于单基片结构下等离子体基团强度更高。其中H_α基团强度远高于单基片台下H_α基团强度;随着甲烷浓度的增加,双基片结构下C_2基团强度上升更加显著,且在相同条件下,双基片结构下C_2与H_α的比值更小,有利于提高金刚石膜的质量。此外,双基片结构下等离子体电子温度较低且随气压的上升而进一步降低。  相似文献   

2.
基片位置对微波等离子体合成金刚石的影响   总被引:1,自引:0,他引:1  
用自制的微波功率为5kW的微波等离子体(MPCVD)装置、用H2/CH4/H2O作为反应气体在较高的沉积气压(12.0kPa)条件下,研究了基片放置在等离子体球边缘附近不同位置对CVD金刚石沉积和生长的影响。结果表明,CVD金刚石的形核和生长对环境的要求是不同的;在等离子体球边缘处不利于金刚石的形核,但有利于高质量金刚石的沉积。  相似文献   

3.
着重介绍采用一段真空波导耦合的ECR微波等离子体装置,以及在CH4-H2混合气体放电情况下,诊断了内部等离子体参数,给出了等离子体密度、电子温度、基板鞘附近的空间电位以及在类金刚石膜合成条件下等离子体中的基团情况,同时研究了它们与工艺参数之间的关系。  相似文献   

4.
等离子体发射光谱作为一种非侵入性等离子体诊断手段能有效探测等离子体内部基团的变化信息,对这些信息的分析可以反映等离子体的特性,从而有助于探究影响单晶金刚石生长结果的原因和机理。CO2是一种比O2更安全的气体,近年来在源气体引入CO2生长高质量单晶金刚石的研究日渐增多。本文利用微波等离子体化学气相沉积法在4.2 kW的微波功率下进行单晶金刚石同质外延生长实验,对生长过程中的CH4/H2/CO2等离子体进行了发射光谱诊断,最后结合光谱信息和拉曼光谱表征研究了CO2体积分数对单晶金刚石生长质量的影响,结果发现CO2浓度增加对C2和CH基团强度抑制作用明显,对C2抑制作用最强,这也是导致生长速率下降的主要原因。I(CH)/I(Hα)比值略有增加,说明CO2增加对金刚石前驱物的沉积有促进作用,这在一定程度上减弱了对生长速率的不利影响。拉曼表征结果说明0~5%CO2浓度下的单晶金刚石质量随CO2浓度上升变好,且浓度为5%时,...  相似文献   

5.
在微波等离子体化学气相沉积法同质外延生长单晶金刚石的过程中添加不同浓度的氮气,利用发射光谱、拉曼光谱等测试手段探究不同浓度氮气对等离子体以及单晶金刚石生长质量和速率的影响,通过分析等离子体内部基团强度的变化探究添加氮气对单晶金刚石生长机理的影响。探究发现:氮气的添加对于等离子体内基团的种类并没有明显改变,但随着氮气浓度的升高,CN基团的基团强度具有明显升高的趋势,C2基团的基团强度不断降低,单晶金刚石的生长速率不断提高。氮气并不是通过提高甲烷的离解度来产生更多的C2基团从而促进单晶金刚石的生长,而是作为一种催化剂加快单了晶金刚石表面的化学反应。当氮气浓度低于0.5%时,单晶金刚石的生长速率提高幅度较大且生长质量良好。但当氮气浓度超过0.8%时,单晶金刚石的生长速率逐渐趋近于饱和,且非金刚石相不断增多,生长质量不断降低,因而通入氮气的最佳浓度应该低于0.5%。  相似文献   

6.
低压甲烷等离子体发射光谱诊断   总被引:10,自引:0,他引:10  
在CH4/He体系下,利用光学发射谱技术,对螺旋波放电产生低压甲烷等离子体内活性粒子的光学发射特征进行了原位测量。根据甲烷离解后产生的所有可能基、团的对称性、构造并分析了甲烷离解的所有可能反应通道,进一步证实了CH、Hα、Hβ以及Hγ等碎片粒子的存在。研究了各实验参量对活性基团CH、Hα、Hβ以及Hγ的发射谱强度的影响。结果表明:CH粒子发射光谱谱线相对强度随着射频功率的增大是先增大而后减小,随工作气压的增大而逐渐减小;随气压及功率的增加,Hα、Hβ以及Hγ相对强度变化的总体趋势都是先增加而后减小的。该结果为等离子体沉积各种薄膜过程的理解及制备工艺参数的调整提供了基础数据。  相似文献   

7.
为了解并优化在微波ECR等离子体增强化学气相沉积制备类金刚石膜工艺研究中的等离子体特性,利用朗缪尔探针法系统地测量了等离子体密度(Ne)、电子温度(Te)随工作气压(p)变化的关系。DLC膜的结构和性能依赖于沉积条件,提高等离子体密度有利于DLC膜的生长。本文示出了不同的CH4流量时,DLC膜的拉曼光谱和表面均方根粗糙度Rmax变化曲线,阐述了等离子体密度Ne、电子温度Te对DLC膜结构和性能的影响。  相似文献   

8.
在实验室自主研制的10 kW微波等离子体化学气相沉积装置上,通过改变气体的进出方式,探讨了气体流动方式对金刚石膜均匀性和质量的影响。结果表明:随着Si基片表面气体分子数增多,等离子体中的H原子和CH活性基团强度增强,扩散到基片表面中心的原子H和含碳活性基团增多,基片中心区域的金刚石膜生长速率略微有所提升,由原来的2.5μm/h提高到2.8μm/h,沉积得到的金刚石膜质量和均匀性均得到改善。  相似文献   

9.
利用微波等离子体化学气相沉积法,以甲烷、氢气和氩气作为工作气体,在较低的沉积温度下,沉积得到了连续的金刚石薄膜。利用扫描电子显微镜、X射线衍射仪、拉曼光谱仪分别对金刚石薄膜的表面形貌、生长结构以及沉积质量进行了表征。实验结果表明,氩气的引入虽然可以有效的降低获得金刚石薄膜所需的基片温度,但为了提高金刚石薄膜的质量,需要适当的提高微波功率。同时,当基片温度一定时,在CH4/H2/Ar体系和CH4/H2体系下均可获得表面形貌与生长结构相似的金刚石薄膜,且可能利用CH4/H2/Ar作为工作气体沉积金刚石薄膜所需要的微波功率更低。  相似文献   

10.
在微波等离子体化学气相沉积法同质外延生长单晶金刚石的过程中添加不同浓度的氮气,利用发射光谱、拉曼光谱等测试手段探究不同浓度氮气对等离子体以及单晶金刚石生长质量和速率的影响,通过分析等离子体内部基团强度的变化探究添加氮气对单晶金刚石生长机理的影响。探究发现:氮气的添加对于等离子体内基团的种类并没有明显改变,但随着氮气浓度的升高,CN基团的基团强度具有明显升高的趋势,C2基团的基团强度不断降低,单晶金刚石的生长速率不断提高。氮气并不是通过提高甲烷的离解度来产生更多的C2基团从而促进单晶金刚石的生长,而是作为一种催化剂加快单了晶金刚石表面的化学反应。当氮气浓度低于0.5%时,单晶金刚石的生长速率提高幅度较大且生长质量良好。但当氮气浓度超过0.8%时,单晶金刚石的生长速率逐渐趋近于饱和,且非金刚石相不断增多,生长质量不断降低,因而通入氮气的最佳浓度应该低于0.5%。  相似文献   

11.
用表面波等离子体装置进行了类金刚石薄膜的合成实验,研究了微波功率、基底负偏压和气体组成等条件对成膜的影响.用拉曼光谱和扫描电子显微镜对薄膜结构和表面形貌进行了分析,得出在100Pa的工作气压下,使用CH4放电,大功率和高偏压有利于生成质量较好的薄膜.  相似文献   

12.
利用微波等离子体气相沉积法,以氢气、氩气、甲烷为气源,在20~26 k Pa,碳源浓度0.3%~1%条件下,通过改变气压与碳源浓度来制备纳米金刚石薄膜。运用Raman、SEM、XRD分别表征纳米金刚石薄膜的质量、表面形貌、晶粒大小。结果表明随着气压升高,沉积速率越快,薄膜质量先升高后降低。在一定气压范围内可以通过增大气压减少碳源浓度,能获得相对高质量的纳米金刚石薄膜。  相似文献   

13.
艾星  陈果  何小珊  张玲  何智兵  杜凯 《材料导报》2018,32(12):1943-1948, 1954
利用质谱研究了不同工艺参数下C_4H_8/H_2等离子体的离子组分和能量的径向分布规律,并分析了CH片段的裂解与聚合过程。结果表明,当工作压强较低时(≤7Pa),小分子CH片段的相对密度随径向距离的增大而逐渐减小,大分子CH片段则逐渐增多;随着工作压强的增大,CH片段的相对密度达到极值所对应的径向距离逐渐增大。当射频功率一定时,小分子CH片段的相对密度随径向距离增大而减小,大分子CH片段则逐渐增多。此外,离子能量随径向距离的增大均呈现出逐渐减小的趋势。当工作压强为3Pa、射频功率为20 W时,C_4H_8/H_2等离子体中CH片段的径向分布最均匀,有利于提高辉光放电聚合物薄膜结构与组分的均匀性。  相似文献   

14.
在自行设计的直接耦合石英管式微波等离子体化学气相沉积(Chemical Vapor Deposition,CVD)金刚石膜装置的石英管反应腔加上磁镜场来约束等离子体,使等离子体球成为“碟盘”状,提高了等离子体球的密度,在基本参数为反应压力2.5kPa、基片温度450℃、Ar、CH4、H2气体流量分别为40sccm、4sccm、60sccm,则沉积面积可由30mm增长到50mm,沉积速率由3.3μm/h增长到3.8μm/h,反射电流由15μA减小到5μA。从而大大减少了薄膜在石英管壁和观察窗上的沉积,更好地利用微波能量,有效利用电离的活性基团沉积出高质量的金刚石薄膜。  相似文献   

15.
基态氢原子的制备是氢原子钟工作的基础,提高氢原子的生成率极为重要.针对电离泡内氢等离子体中的原子成分不易直接被探测的情况,本文将软件仿真模拟与实验光谱诊断相结合,研究泡内原子成分.采用COMSOL软件建立射频感应耦合等离子体(ICP)和微波电子回旋共振(ECR)两种放电模型,模拟了一定输入功率、不同气压下氢等离子体中原子密度的分布规律.根据仿真模型,使用ICP和ECR两种电离源在通氢的石英制电离泡内形成等离子体,测量了一定输入功率、不同气压下的辐射光谱强度.结果表明,15 W输入功率、8 Pa~14 Pa气压时,微波ECR放电产生的原子密度明显高于射频ICP放电,可知此时微波ECR放电能更高效地产生氢原子.该研究显示出微波ECR放电在氢原子钟上的应用前景.  相似文献   

16.
根据金刚石厚膜的实际应用要求,建立了EA-CVD(E lectron Assisted Chem ical Vapor Deposition)方法,制备出直径为80mm,膜厚为1mm以上的大尺寸高品质的均匀金刚石厚膜,其膜厚不均匀性小于5%,热导率不均匀性小于10%,膜片中部和边缘磨耗比基本相同,大约在1.5×105左右。同时研究了制备参数对膜的品质和膜厚均匀性的影响。结果表明:甲烷浓度、工作气压、偏流、灯丝与基片间距等参数对金刚石厚膜的品质和膜厚均匀性都产生影响。辉光等离子体的状态对膜的均匀生长作用明显,较低的工作气压,较大的偏流和较大的灯丝与基片间距有利于气体分解和辉光等离子体的发散,从而导致大面积金刚石厚膜不同位置的品质和膜厚趋于均匀。  相似文献   

17.
在实验室自制的10 kW微波等离子体化学气相沉积装置中,系统分析提高功率对生长金刚石膜的影响。利用等离子体发射光谱诊断分析高功率微波等离子体放电环境的特征,同时采用扫描电镜及Raman光谱对不同功率条件下获得的金刚石膜的形貌和质量进行表征。结果表明:微波功率的提高可以获得面积更大的强场区域,为金刚石的大面积均匀成膜提供了有利条件;同时提高微波功率可以产生更高的电子密度,激发更多的活性氢原子和有利于金刚石生长的含碳基团;在气压为15 kPa,H_2/CH_4流量比为200∶6 mL/min的条件下,当功率由4000上升到5000 W时,金刚石膜的质量明显得到提高;当功率升高到5500 W时,金刚石质量开始下降,出现孪晶;但在升高功率的过程中,晶粒尺寸增大的趋势没有改变。因此,提高微波功率易于活性氢原子的产生并可更为充分的活化含碳大分子基团;在本实验条件下,当微波功率为5000 W时,所制备的金刚石膜可具有较高的质量。  相似文献   

18.
利用SiH4(80%Ar稀释)和CH4作为源气体,通过改变源气体流量比、基片温度、沉积气压等参量,使用微波电子回旋共振化学气相沉积法生长非晶碳化硅薄膜。实验结果表明碳化硅薄膜沉积速率随气体流量比R(CH4/(CH4+SiH4))的增加而减小、随基片温度的升高明显减小、随沉积气压的增加先增大后减小。红外结构表明:在较低流量比R下,薄膜主要由硅团簇和非晶碳化硅两相组成,而当R>0.5时,薄膜的结构主要由非晶碳化硅组成,薄膜中键合的H主要是Si和C的封端原子。同时,沉积温度的升高使碳化硅薄膜中Si-H,C-C和C-H键的含量减少,而薄膜中Si-C含量明显增加且峰位发生了红移。薄膜相结构的转变是薄膜光学带隙变化的原因。  相似文献   

19.
搭建了一套以可调谐半导体激光器为光源的连续波光腔衰荡光谱装置,将其与微波等离子体装置结合,对等离子体中的OH自由基进行了原位定量测量,同时考察了OH自由基数密度随气压和微波功率的变化情况.实验结果表明:以氮气为工作气体,在(0.66~3.99)×103Pa范围内,随着气压的升高,OH自由基数密度先增加后降低,在1.995×103Pa时达到最大值;随着微波功率的升高OH自由基数密度逐渐增加.  相似文献   

20.
在微波等离子体化学气相沉积装置中 ,采用正交试验法研究金刚石在镜面抛光的Si( 1 0 0 )面上的偏压形核过程中 ,形核时间、偏压电压、气压及甲烷浓度对形核密度的影响 ,研究结果表明 :形核密度随形核时间的增加而增加 ,适中的偏压电压和沉积气压有利于金刚石的形核 ,而甲烷浓度的影响很小。正交试验所得的最佳形核条件为偏压 -1 5 0V ;时间 1 2min ;气压 4kPa;CH4 比率 5 % ,在该条件下金刚石的形核密度达到 1 0 1 0 个 cm2 。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号