首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Loss of heterozygosity of the distal region of chromosome 1p where tumor suppressor gene(s) might harbor is frequently observed in many human cancers including neuroblastoma (NBL) with MYCN amplification and poor prognosis. We have identified for the first time a homozygously deleted region at the marker D1S244 within the smallest region of overlap at 1p36.2-p36.3 in two NBL cell lines, NB-1 and NB-C201 (MASS-NB-SCH1), although our genotyping has suggested the possibility that both lines are derived from the same origin. The 800-kb PAC contig covering the entire region of homozygous deletion was made and partially sequenced (about 60%). The estimated length of the deleted region was 500 kb. We have, thus far, identified six genes within the region which include three known genes (DFF45, PGD, and CORT) as well as three other genes which have been reported during processing our present project for the last 3(1/2) years (HDNB1/UFD2, KIAA0591F/KIF1B-beta, and PEX14). They include the genes related to apoptosis, glucose metabolism, ubiquitin-proteasome pathway, a neuronal microtubule-associated motor molecule and biogenesis of peroxisome. At least three genes (HDNB1/UFD2, KIAA0591F/KIF1B-beta, and PEX14) were differentially expressed at high levels in favorable and at low levels in unfavorable subsets of primary neuroblastoma. Since the 1p distal region is reported to be imprinted, those differentially expressed genes could be the new members of the candidate NBL suppressor, although RT-PCR-SSCP analysis has demonstrated infrequent mutation of the genes so far identified. Full-sequencing and gene prediction for the region of homozygous deletion would elucidate more detailed structure of this region and might lead to discovery of additional candidate genes. Oncogene (2000) 19, 4302 - 4307  相似文献   

2.
3.
4.
Antizyme is a negative regulator of cellular polyamines. The gene for antizyme (OAZ1) is mapped to 19p13.3, where frequent allelic imbalance (AI) is observed in ovarian cancer. The potential role of antizyme 1 in ovarian carcinogenesis was addressed in this study. Mutations of the OAZ1 gene, including the entire coding region and associated promoter region, were examined in 50 primary ovarian tumors and 8 ovarian cancer cell lines by PCR-SSCP and sequencing analyses. A missense mutation in exon 1 and a nucleotide change at the 3'-UTR were detected in an ovarian cancer cell line and its derivative cisplatin resistant cell line. No somatic mutation was detected in primary ovarian tumors, although 7 polymorphic sites were identified. AI of the OAZ1 gene was detected in 7 of 30 informative cases of primary ovarian cancer (23%). Subsequent multiplex fluorescent microsatellite analysis at 7 loci on 19p and at 4 loci on 19q in 50 primary ovarian tumors revealed a commonly deleted region, approximately 4.7 Mb, between the D19S424 and D19S884 loci on 19p13.3 in the vicinity of the OAZ1 locus. The most frequent AI was observed at D19S216 (50%). These results suggest that one or more tumor suppressor genes other than OAZ1 exist near the D19S216 locus on 19p13.3.  相似文献   

5.
We have identified new mutations in the p53 gene in 3/11 growth factor-independent and in 2/8 growth factor-dependent human acute myeloid leukemia (AML)-derived cell lines by single-strand conformational polymorphism (SSCP) and sequencing analysis. MEG-01 had a triplet deletion at codon 304; F-36P, NB-4 and MV4-11 showed point mutations at codon 344. F-36P had a second point mutation at codon 270 and NB-4 additionally at codon 319. M-MOK had a nucleotide substitution at codon 191. The frequency of p53 mutations in the cytokine-independent cell lines was comparable to that in the cytokine-dependent lines. These results suggest that loss of Wild type (wt) p53 is not the decisive event causing tumor cells to proliferate in vitro without externally added growth factors.  相似文献   

6.
The beta-catenin gene (CTNNB1) has been shown to be genetically mutated in various human malignancies. To determine whether the beta-catenin gene is responsible for oncogenesis in thoracic malignancies, we searched for the mutation in 166 lung cancers (90 primary tumors and 76 cell lines), one blastoma and 10 malignant mesotheliomas (two primary tumors and eight cell lines). Among the lung cancers, including 43 small cell lung cancers (SCLCs) and 123 non-small cell lung cancers (NSCLCs), we identified four alterations in exon 3, which is the target region of mutation for stabilizing beta-catenin. One primary adenocarcinoma had a somatic mutation from C to G, leading to an amino acid substitution from Ser to Cys at codon 37. Among the cell lines, SCLC NCI-H1092 had a mutation from A to G, leading to an Asp to Gly substitution at codon 6, NSCLC HCC15 had a mutation from C to T, leading to a Ser to Phe substitution at codon 45, and NSCLC NCI-H358 had a mutation from A to G, leading to a Thr to Ala substitution at codon 75. One blastoma also had a somatic mutation from C to G, leading to a Ser to Cys substitution at codon 37. Among the 10 malignant mesotheliomas, we identified a homozygous deletion in the NCI-H28 cell line. Cloning of the rearranged fragment from NCI-H28 indicated that all the exons except exon 1 of the beta-catenin gene are deleted and that the deletion junction is 13 kb downstream from exon 1. Furthermore, Northern blot analysis of 26 lung cancer and eight mesothelioma cell line RNAs detected ubiquitous expression of the beta-catenin messages except NCI-H28, although Western blot analysis showed that relatively less amounts of protein products were expressed in some of lung cancer cell lines. Our findings suggest that the beta-catenin gene is infrequently mutated in lung cancer and that the NCI-H28 homozygous deletion of the beta-catenin gene might indicate the possibility of a new tumor suppressor gene residing in this region at 3p21.3, where various types of human cancers show frequent allelic loss.  相似文献   

7.
Deletion of the distal short arm of chromosome 1 occurs in 35% of primary neuroblastomas (NBs). These deletions tend to be large and extend to the telomere, but a common region within sub-band 1p36.3 is consistently lost. Despite intensive investigation, no candidate tumor suppressor gene within this region has been shown to undergo tumor-specific mutation consistent with biallelic inactivation. In addition, initial studies demonstrated preferential loss of the maternally inherited 1p homologue in NBs with 1p loss of heterozygosity (LOH) without MYCN amplification. This has led to the widely accepted hypothesis that a genomically imprinted NB suppressor gene is the target of 1p deletion in this subset. To test this hypothesis we have studied 293 primary NBs for LOH within 1p36.3 and determined the parental origin of the deleted 1p homologue. LOH within 1p36.3 was demonstrated in 55 NBs (19%). Of these, 29 occurred in tumors without MYCN amplification: 13 had deletion of the maternally inherited 1p, whereas 16 had deletion of the paternally inherited 1p (P = 0.58). These data strongly refute a parent-of-origin effect for 1p deletions in NB and exclude the existence of an imprinted NB suppressor locus in this region.  相似文献   

8.
The distal region of a short arm of chromosome 1p is frequently deleted in many human cancers including neuroblastoma (NBL), in which it has been narrowed down to the smallest region of overlap between D1S244 and D1S214 (approximately 7 cM). During the search for the candidate tumor suppressor genes mapped within the region, we found the KIAA0591 gene which encoded a new human kinesin-related protein with a homology to human axonal transporter of synaptic vesicles (ATSV). The kinesin is an intracellular motor protein and often associated with neuronal differentiation and survival. Here we identified a complete open reading frame of the KIAA0591 gene by screening a cDNA library derived from human substantia nigra. The KIAA0591 protein contains a possible pleckstrin homology (PH) domain at its carboxy-terminus. However, it did not possess a force-generating motor domain which is well conserved among kinesin superfamily members (KIFs). Northern blot analysis demonstrated that KIAA0591 mRNA was preferentially expressed in both adult and fetal brains, kidney, skeletal muscle and pancreas. KIAA0591 was expressed in favorable NBLs at higher levels than in unfavorable NBLs, although RT-PCR SSCP analysis showed no mutation within the coding region of the KIAA0591 gene, when 8 neuroblastoma tissues and 15 neuroblastoma-derived cell lines were examined. Thus, the full-length KIAA0591 gene may be a novel member of human KIF superfamily which lacks motor domain and might function as a tumor suppressor in an epigenetic but not a classic Knudson's manner.  相似文献   

9.
We describe a case of natural killer (NK) cell lymphoma/leukemia with only an interstitial deletion in the short arm of chromosome 12 as the primary event. Fluorescence in situ hybridization revealed that the ETV6 locus (12p13) and subtelomeric sequences are not deleted in the process. The p27/kip1 locus (12p12-13), a candidate tumor suppressor gene, was deleted on the abnormal chromosome. Sequence analysis detected an adenine nucleotide deletion in the third codon of exon 1 leading to frameshift and premature termination at codon 41 of the retained copy of p27/kip1. To the best of our knowledge, this is the first report in literature on a NK cell lymphoma/leukemia with complete loss of p27/kip1.  相似文献   

10.
11.
DLC-1 gene inhibits human breast cancer cell growth and in vivo tumorigenicity   总被引:15,自引:0,他引:15  
The human DLC-1 (deleted in liver cancer 1) gene was cloned from a primary human hepatocellular carcinoma (HCC) and mapped to the chromosome 8p21-22 region frequently deleted in common human cancers and suspected to harbor tumor suppressor genes. DLC-1 was found to be deleted or downregulated in a significant number of HCCs. We expanded our investigations to other cancers with recurrent deletions of 8p22, and in this study examined alterations of DLC-1 in primary human breast tumors, human breast, colon, and prostate tumor cell lines. Genomic deletion of DLC-1 was observed in 40% of primary breast tumors, whereas reduced or undetectable levels of DLC-1 mRNA were seen in 70% of breast, 70% of colon, and 50% of prostate tumor cell lines To see whether DLC-1 expression affects cell growth and tumorigenicity, two breast carcinoma cell lines lacking the expression of endogenous gene were transfected with the DLC-1 cDNA. In both cell lines, DLC-1 transfection caused significant growth inhibition and reduction of colony formation. Furthermore, introduction of the DLC-1 cDNA abolished the in vivo tumorigenicity in nude mice, suggesting that the DLC-1 gene plays a role in breast cancer by acting as a bona fide tumor suppressor gene.  相似文献   

12.
KIF1Bβ, a member of the kinesin superfamily of motor proteins, is a haploinsufficient tumor suppressor mapped to chromosome 1p36.2, which is frequently deleted in neural crest–derived tumors, including neuroblastoma and pheochromocytoma. While KIF1Bβ acts downstream of the nerve growth factor (NGF) pathway to induce apoptosis, further molecular functions of this gene product have largely been unexplored. In this study, we report that KIF1Bβ destabilizes the morphological structure of mitochondria, which is critical for cell survival and apoptosis. We identified YME1L1, a mitochondrial metalloprotease responsible for the cleavage of the mitochondrial GTPase OPA1, as a physical interacting partner of KIF1Bβ. KIF1Bβ interacted with YME1L1 through its death‐inducing region, as initiated the protease activity of YME1L1 to cleave the long forms of OPA1, resulting in mitochondrial fragmentation. Overexpression of YME1L1 promoted apoptosis, while knockdown of YME1L1 promoted cell growth. High YME1L1 expression was significantly associated with a better prognosis in neuroblastoma. Furthermore, in NGF‐deprived PC12 cells, KIF1Bβ and YME1L1 were upregulated, accompanied by mitochondrial fragmentation and apoptotic cell death. Small interfering RNA–mediated knockdown of either protein alone, however, remarkably inhibited the NGF depletion–induced apoptosis. Our findings indicate that tumor suppressor KIF1Bβ plays an important role in intrinsic mitochondria–mediated apoptosis through the regulation of structural and functional dynamics of mitochondria in collaboration with YME1L1. Dysfunction of the KIF1Bβ/YME1L1/OPA1 mechanism may be involved in malignant biological features of neural crest–derived tumors as well as the initiation and progression of neurodegenerative diseases.  相似文献   

13.
DMBT1 (deleted in malignant brain tumors) is a candidate tumor suppressor gene that has been mapped to chromosome 10q25.3-q26.1, a region in which frequent loss of heterozygosity (LOH) has been observed in several human tumors. Since DMBT1 is highly expressed in the lung, we analyzed LOH at the DMBT1 locus and expression of this gene in lung cancer. Thirty-five (53%) of 66 primary lung cancers showed LOH, and diminished expression of DMBT1 was observed in 20 (91%) of 22 lung cancer cell lines: three (14%) of them showed loss of expression. We further determined the primary structure of DMBT1 and analyzed genetic alterations in this gene using 23 lung cancer cell lines. Two (9%) of them had homozygous deletion within the gene, and two cell lines had genetic aberrations: one was a rearrangement involving exons 5 and 6, and the other was a missense mutation at codon 52. These results suggest that inactivation of the DMBT1 gene plays an important role in human lung carcinogenesis.  相似文献   

14.
Expression of the DMBT1 gene is frequently suppressed in human lung cancer.   总被引:4,自引:0,他引:4  
DMBT1 (deleted in malignant brain tumors) is a candidate tumor suppressor gene that has been mapped to chromosome 10q25.3-q26.1, a region in which frequent loss of heterozygosity (LOH) has been observed in several human tumors. Since DMBT1 is highly expressed in the lung, we analyzed LOH at the DMBT1 locus and expression of this gene in lung cancer. Thirty-five (53%) of 66 primary lung cancers showed LOH, and diminished expression of DMBT1 was observed in 20 (91%) of 22 lung cancer cell lines: three (14%) of them showed loss of expression. We further determined the primary structure of DMBT1 and analyzed genetic alterations in this gene using 23 lung cancer cell lines. Two (9%) of them had homozygous deletion within the gene, and two cell lines had genetic aberrations: one was a rearrangement involving exons 5 and 6, and the other was a missense mutation at codon 52. These results suggest that inactivation of the DMBT1 gene plays an important role in human lung carcinogenesis.  相似文献   

15.
p21/WAF1/CIP1/SDI1 is an important cell-cycle mediator with tumor suppressor gene capabilities, and its inactivation could potentially lead to tumor progression. Because tumor suppressor genes are commonly inactivated by somatic and germline mutations, we analyzed a variety of human tumor cell lines for p21 mutations. We used single-strand conformational analysis and direct sequencing to identify possible mutations in the p21 coding region. Two base-alterations were observed in 41 immortalized human tumor cell lines. A previously reported polymorphism that results in a serine-to-arginine amino-acid substitution at codon 31 was found in 24% (10 of 41) of the tumor cell lines but was also found in 10% (six of 62) of normal parental DNAs tested and 7% (three of 43) of normal DNAs from patients with primary endometrial tumors. Another nucleotide substitution found at codon 80 resulted in the replacement of threonine with methionine. Codon 80 changes were found in 7% (three of 41) of the tumor cell lines (all endometrial) and in 2% (one of 62) of the normal parental DNAs. (This article is a US Government work and, as such, is in the public domain in the United States of America.)  相似文献   

16.
17.
Park HW  Song SY  Lee TJ  Jeong D  Lee TY 《Oncology reports》2007,18(1):267-272
In the present study, we analyzed p16, retinoblastoma (Rb), and cyclin D1 abnormalities in head and neck squamous cell carcinoma (HNSCC) tissues and cell lines from Korean patients. We found a 40% loss of heterozygosity at the D9S171 locus (9p21 region) these tissues. All eight of the HNSCC cell lines did not express the p16 protein, and in two of these cell lines (Amc-HN-6 and 8), this was due to a deletion of the p16 gene. Three of the cell lines (Amc-HN-3 to 5) that expressed the p16 mRNA had the same nonsense mutation at codon 50 (CGA-Arg to TGA-Ter). The Amc-HN-1 and Amc-HN-7 cell lines, which did not express the p16 mRNA, had a missense mutation at codon 9 (GCC-Ala to GTC-Val) and a silent mutation at codon 106 (CCC-Pro to CCA), respectively. The Amc-HN-2 cell line (p16 exon-positive/mRNA-negative) had a single base deletion at codon 38 (CGG-Arg to CG), which resulted in a frameshift and a consequent stop signal at codon 44. The Rb protein was detected in all of the eight cell lines, although it was inactive in five of these due to hyperphosphorylation. The inverse relationship between p16 and Rb was 62.5% (5/8). Cyclin D1 was overexpressed in all of the eight cell lines. Our results suggest that the abrogation of p16, the overexpression of cyclin D1, and the consequent inactivation of Rb could be important factors in the carcinogenesis of HNSCCs.  相似文献   

18.
PURPOSE: To investigate the prevalence and potential clinical significance of epigenetic aberrations in neuroblastoma (NB). EXPERIMENTAL DESIGN: The methylation status of 11 genes that are frequently epigenetically inactivated in adult cancers was assayed in 13 NB cell lines. The prevalence of RASSF1A and TSP-1 methylation was also analyzed in 56 NBs and 5 ganglioneuromas by methylation-specific PCR. Associations between the methylation status of RASSF1A and TSP-1 and patient age, tumor stage, tumor MYCN status, and patient survival were evaluated. RESULTS: Epigenetic changes were detected in all 13 NB cell lines, although the pattern of gene methylation varied. The putative tumor suppressor gene RASSF1A was methylated in all 13 cell lines, and TSP-1 and CASP8 were methylated in 11 of 13 cell lines. Epigenetic changes of DAPK and FAS were detected in only small numbers of cell lines, whereas none of the cell lines had methylation of p16, p21, p73, RAR-beta2, SPARC, or TIMP-3. RASSF1A was also methylated in 70% of the primary NB tumors tested, and TSP-1 methylation was detected in 55% of the tumors. RASSF1A methylation was significantly associated with age >1 year (P < 0.01), high-risk disease (P < 0.016), and poor survival (P < 0.001). In contrast, no association between TSP-1 methylation and prognostic factors or survival was observed. CONCLUSIONS: Our results suggest that epigenetic inactivation of RASSF1A may contribute to the clinically aggressive phenotype of high-risk NB.  相似文献   

19.
Our previous studies utilized a microcell hybrid (MCH) cell line-based functional model of tumor suppression to localize a liver tumor suppressor to human chromosome 11, map the suppressor locus to a <1-Mb region within human 11p11.2, and identify a number of expressed sequence tags (ESTs) and genes that represent candidate liver tumor suppressor genes. The Human Genome Project has recently positioned a number of additional genes, ESTs, and predicted genes within the human 11p11.2 liver tumor suppressor region. In this study, we analyzed 26 ESTs and genes (known and predicted) that have been localized to human 11p11.2. Four of these ESTs/genes (FLJ23598, FLJ10450, KIAA1580, SYT13) mapped to the minimal tumor suppressor region of human 11p11.2, the smallest region conferring suppression of tumorigenicity in the MCH cell lines. Each of these ESTs/genes were expressed among an index panel of suppressed MCH cell lines (derived from GN6TF rat liver tumor cells), suggesting that these ESTs/genes represent excellent candidates for the human 11p11.2 liver tumor suppressor gene. To verify the candidate status of these sequences, 8 additional MCH cell lines (derived from GN3TG and GP10TA rat liver tumor cells) were analyzed. Three ESTs/genes (FLJ23598, FLJ10450, KIAA1580) proved to be less than ideal candidates, based upon their loss from suppressed MCH cell lines (DNA deletion), and/or their retention and expression in a non-suppressed MCH cell line. In contrast, SYT13 is present in the DNA from all suppressed MCH cell lines (n=10), and is deleted in a non-suppressed MCH cell line. Furthermore, SYT13 mRNA is expressed in 100% of suppressed cell lines, and is not expressed in the non-suppressed MCH cell line or in MCH-derived tumor cell lines (n=6). These results suggest that SYT13 is an excellent candidate for the human 11p11.2 liver tumor suppressor gene based upon its: i) location within the human 11p11.2 liver tumor suppressor region; ii) loss from the DNA of a non-suppressed MCH cell line that lacks the human 11p11.2 liver tumor suppressor region; iii) expression among suppressed MCH cell lines; and iv) lack of expression by MCH-derived tumor cell lines.  相似文献   

20.
Substantial genomic and functional evidence from primary tumors and cell lines indicates that a consistent region of distal chromosome 1p is deleted in a sizable proportion of human neuroblastomas, suggesting that this region contains one or more tumor suppressor genes. To determine systematically and precisely the location and extent of 1p deletion in neuroblastomas, we performed allelic loss studies of 737 primary neuroblastomas and genotype analysis of 46 neuroblastoma cell lines. Together, the results defined a single region within 1p36.3 that was consistently deleted in 25% of tumors and 87% of cell lines. Two neuroblastoma patients had constitutional deletions of distal 1p36 that overlapped the tumor-defined region. The tumor- and constitutionally-derived deletions together defined a smallest region of consistent deletion (SRD) between D1S2795 and D1S253. The 1p36.3 SRD was deleted in all but one of the 184 tumors with 1p deletion. Physical mapping and DNA sequencing determined that the SRD minimally spans an estimated 729 kb. Genomic content and sequence analysis of the SRD identified 15 characterized, nine uncharacterized, and six predicted genes in the region. The RNA expression profiles of 21 of the genes were investigated in a variety of normal tissues. The SHREW1 and KCNAB2 genes both had tissue-restricted expression patterns, including expression in the nervous system. In addition, a novel gene (CHD5) with strong homology to proteins involved in chromatin remodeling was expressed mainly in neural tissues. Together, these results suggest that one or more genes involved in neuroblastoma tumorigenesis or tumor progression are likely contained within this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号