首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 409 毫秒
1.
2.
《Nanotoxicology》2013,7(6):769-779
Abstract

The printer is one of the most common office equipment. Recently, it was reported that toner formulations for printing equipment constitute nano-enabled products (NEPs) and contain engineered nanomaterials (ENMs) that become airborne during printing. To date, insufficient research has been performed to understand the potential toxicological properties of printer-emitted particles (PEPs) with several studies using bulk toner particles as test particles. These studies demonstrated the ability of toner particles to cause chronic inflammation and fibrosis in animal models. However, the toxicological implications of inhalation exposures to ENMs emitted from laser printing equipment remain largely unknown. The present study investigates the toxicological effects of PEPs using an in vitro alveolar-capillary co-culture model with Human Small Airway Epithelial Cells (SAEC) and Human Microvascular Endothelial Cells (HMVEC). Our data demonstrate that direct exposure of SAEC to low concentrations of PEPs (0.5 and 1.0?µg/mL) caused morphological changes of actin remodeling and gap formations within the endothelial monolayer. Furthermore, increased production of reactive oxygen species (ROS) and angiogenesis were observed in the HMVEC. Analysis of cytokine and chemokine levels demonstrates that interleukin (IL)-6 and MCP-1 may play a major role in the cellular communication observed between SAEC and HMVEC and the resultant responses in HMVEC. These data indicate that PEPs at low, non-cytotoxic exposure levels are bioactive and affect cellular responses in an alveolar-capillary co-culture model, which raises concerns for potential adverse health effects.  相似文献   

3.
Prenatal and early-life environmental tobacco smoke (ETS) exposure can induce epigenetic alterations associated with inflammation and respiratory disease. The objective of this study was to address the long-term epigenetic consequences of perinatal ETS exposure on latent respiratory disease risk, which are still largely unknown. C57BL/6 mice were exposed to prenatal and early-life ETS; offspring lung pathology, global DNA, and gene-specific methylation were measured at two adult ages. Significant alterations in global DNA methylation and promoter methylation of IFN-γ and Thy-1 were found in ETS-exposed offspring at 10–12 and 20?weeks of age. These sustained epigenetic alterations preceded the onset of significant pulmonary pathologies observed at 20?weeks of age. This study suggests that perinatal ETS exposure induces persistent epigenetic alterations in global DNA, as well as IFN-γ and Thy-1 promoter methylation that precede the adult onset of fibrotic lung pathology. These epigenetic findings could represent potential biomarkers of latent respiratory disease risk.  相似文献   

4.
《Nanotoxicology》2013,7(6):760-768
Abstract

It is well established that printers emit nanoparticles during their operation. To-date, however, the physicochemical and toxicological characterization of “real world” printer-emitted nanoparticles (PEPs) remains incomplete, hampering proper risk assessment efforts. Here, we investigate our earlier hypothesis that engineered nanomaterials (ENMs) are used in toners and ENMs are released during printing (consumer use). Furthermore, we conduct a detailed physicochemical and morphological characterization of PEPs in support of ongoing toxicological assessment. A comprehensive suite of state of the art analytical methods and tools was employed for the physicochemical and morphological characterization of 11 toners widely utilized in printers from major printer manufacturers and their PEPs. We confirmed that a number of ENMs incorporated into toner formulations (e.g. silica, alumina, titania, iron oxide, zinc oxide, copper oxide, cerium oxide, carbon black among others) and released into the air during printing. All evaluated toners contained large amounts of organic carbon (OC, 42–89%), metals/metal oxides (1–33%), and some elemental carbon (EC, 0.33–12%). The PEPs possess a composition similar to that of toner and contained 50–90% OC, 0.001–0.5% EC and 1–3% metals. While the chemistry of the PEPs generally reflected that of their toners, considerable differences are documented indicative of potential transformations taking place during consumer use (printing). We conclude that: (i) Routine incorporation of ENMs in toners classifies them as nano-enabled products (NEPs); (ii) These ENMs become airborne during printing; (iii) The chemistry of PEPs is complex and it reflects that of the toner and paper. This work highlights the importance of understanding life-cycle (LC) nano-EHS implications of NEPs and assessing real world exposures and associated toxicological properties rather than focusing on “raw” materials used in the synthesis of an NEP.  相似文献   

5.
《Nanotoxicology》2013,7(4):252-273
In view of the fast-growing industrial applications of engineered nanomaterials (ENMs), the evaluation of their genotoxic potential and of their mode of action is a necessity to conduct adequate hazard/risk assessment and to produce safer and sustainable ENMs. This review aims at: (i) Providing an evaluation of in vitro and in vivo genotoxicity data available for ENM, and (ii) proposing minimal criteria for conducting nano-genotoxicity assays. The possible modes of action of ENM (i.e., generation of reactive oxygen species (ROS) and mechanical interference with cellular components) and the potential cellular targets are discussed. The available studies are evaluated on the basis of specific quality criteria after categorisation according to ENMs type/size investigated. No definitive conclusion can be drawn concerning the genotoxic activity of ENMs, essentially because of the limited number of data, incomplete physico-chemical characterization of ENMs examined and shortcomings in experimental approaches. This evaluation revealed gaps to be considered in future studies (e.g., one-sided approach focusing mainly on ROS as mode of action) and the need to develop adequate positive controls for genotoxicity assays when conducted with nanomaterials.  相似文献   

6.
There has been a growing concern that epigenetic events, that is, heritable changes in gene expression superimposed on DNA nucleotide sequences, may be involved in chemically and/or nutritionally mediated adverse health outcomes, such as reproductive toxicity and cancer. This concern has been driven by an increasing number of studies reporting toxicant-induced alterations to the epigenome in the form of changes in DNA methylation, histone/chromatin remodeling, and altered expression of non-coding RNAs. These three major mechanisms of epigenetic modifications may have coordinated, independent, or potentially antagonistic influences on gene expression. Complicating this understanding is the incomplete understanding of the normal state and dynamic variation of the epigenome, which differs widely between cells, tissues, developmental state, age, strain, and species. This review serves as a framework to outline characteristics composing an ideal epigenetic screen(s) for hazard identification in product safety assessment. In order to implement such a screen, first there needs to be a better understanding of adaptive versus adverse changes in the epigenome, which includes identification of robust and reproducible causal links between epigenetic changes and adverse apical end points, and second development of improved reporter assay tools to monitor such changes. An ideal screen would be in vitro-based, medium- to high-throughput, and assess all three branches of epigenome control (i.e. methylation, histone modifications, non-coding RNAs), although also being quantitative, objective, portable (i.e. lab to lab), and relevant to humans.  相似文献   

7.
《Nanotoxicology》2013,7(4):417-431
Abstract

In vitro toxicity assays are efficient and inexpensive tools for screening the increasing number of engineered nanomaterials (ENMs) entering the consumer market. However, the data produced by in vitro studies often vary substantially among different studies and from in vivo data. In part, these discrepancies may be attributable to lack of standardisation in dispersion protocols and inadequate characterisation of particle–media interactions which may affect the particle kinetics and the dose delivered to cells. In this study, a novel approach for preparation of monodisperse, stabilised liquid suspensions is presented and coupled with a numerical model which estimates delivered dose values. Empirically derived material- and media-specific functions are presented for each media–ENM system that can be used to convert administered doses to delivered doses. The interactions of ENMs with a variety of physiologic media were investigated and the importance of this approach was demonstrated by in vitro cytotoxicity assays using THP-1 macrophages.  相似文献   

8.
Introduction: Advancements in epigenetic treatments are not only coming from new drugs, but also from modifications or encapsulation of the existing drugs into different formulations leading to greater stability and enhanced delivery to the target site. The epigenome is highly regulated and complex; therefore, it is important that off-target effects of epigenetic drugs be minimized. The step from in vitro to in vivo treatment of these drugs often requires development of a method of effective delivery for clinical translation.

Areas covered: This review covers epigenetic mechanisms such as DNA methylation, chromatin remodeling and small-RNA-mediated gene regulation. There is a section in the review with examples of diseases where epigenetic alterations lead to impaired pathways, with an emphasis on cancer. Epigenetic drugs, their targets and clinical status are presented. Advantages of using a delivery method for epigenetic drugs as well as examples of current advancements and challenges are also discussed.

Expert opinion: Epigenetic drugs have the potential to be very effective therapy against a number of diseases, especially cancers and neurological disorders. As with many chemotherapeutics, undesired side effects need to be minimized. Finding a suitable delivery method means reducing side effects and achieving a higher therapeutic index. Each drug may require a unique delivery method exploiting the drug’s chemistry or other physical characteristic requiring interdisciplinary participation and would benefit from a better understanding of the mechanisms of action.  相似文献   

9.
MicroRNAs and cancer epigenetics   总被引:1,自引:0,他引:1  
The term epigenetics refers to all heritable changes in gene expression that are not associated with concomitant alterations in the DNA sequence. Reversible DNA methylation and histone modifications are the hallmarks of epigenetic gene regulation. MicroRNAs (miRNAs) are a recently discovered category of noncoding RNAs with important regulatory functions. Aberrancies in both the epigenetic and in the miRNA regulation of genes have been documented in cancer. An increasing number of studies are showing that the abnormalities of the epigenome and of the miRNome are not independent and could be explained both by an epigenetic regulation of miRNA expression and by miRNA control on components of the epigenetic machinery. A deeper understanding of this correlation could lead to new therapeutic avenues.  相似文献   

10.
《Nanotoxicology》2013,7(7):871-885
Abstract

In vitro high throughput screening platforms based on mechanistic injury pathways are been used for hazard assessment of engineered nanomaterials (ENM). Toxicity screening and other in vitro nanotoxicology assessment efforts in essence compare and rank nanomaterials relative to each other. We hypothesize that this ranking of ENM is susceptible to dispersion and dosimetry protocols, which continue to be poorly standardized. Our objective was to quantitate the impact of dosimetry on toxicity ranking of ENM. A set of eight well-characterized and diverse low aspect ratio ENMs, were utilized. The recently developed in vitro dosimetry platform at Harvard, which includes preparation of fairly monodispersed suspensions, measurement of the effective density of formed agglomerates in culture media and fate and transport modeling was used for calculating the effective dose delivered to cells as a function of time. Changes in the dose–response relationships between the administered and delivered dose were investigated with two representative endpoints, cell viability and IL-8 production, in the human monocytic THP-1 cells. The slopes of administered/delivered dose–response relationships changed 1:4.94 times and were ENM-dependent. The overall relative ranking of ENM intrinsic toxicity also changed considerably, matching notably better the in vivo inflammation data (R2?=?0.97 versus 0.64). This standardized dispersion and dosimetry methodology presented here is generalizable to low aspect ratio ENMs. Our findings further reinforce the need to reanalyze and reinterpret in vitro ENM hazard ranking data published in the nanotoxicology literature in the light of dispersion and dosimetry considerations (or lack thereof) and to adopt these protocols in future in vitro nanotoxicology testing.  相似文献   

11.
《Biochemical pharmacology》2011,81(12):1771-1792
Epigenetics refers to heritable changes that are not encoded in the DNA sequence itself, but play an important role in the control of gene expression. In mammals, epigenetic mechanisms include changes in DNA methylation, histone modifications and non-coding RNAs. Although epigenetic changes are heritable in somatic cells, these modifications are also potentially reversible, which makes them attractive and promising avenues for tailoring cancer preventive and therapeutic strategies. Burgeoning evidence in the last decade has provided unprecedented clues that diet and environmental factors directly influence epigenetic mechanisms in humans. Dietary polyphenols from green tea, turmeric, soybeans, broccoli and others have shown to possess multiple cell-regulatory activities within cancer cells. More recently, we have begun to understand that some of the dietary polyphenols may exert their chemopreventive effects in part by modulating various components of the epigenetic machinery in humans. In this article, we first discuss the contribution of diet and environmental factors on epigenetic alterations; subsequently, we provide a comprehensive review of literature on the role of various dietary polyphenols. In particular, we summarize the current knowledge on a large number of dietary agents and their effects on DNA methylation, histone modifications and regulation of expression of the non-coding miRNAs in various in vitro and in vivo models. We emphasize how increased understanding of the chemopreventive effects of dietary polyphenols on specific epigenetic alterations may provide unique and yet unexplored novel and highly effective chemopreventive strategies for reducing the health burden of cancer and other diseases in humans.  相似文献   

12.
Epigenetics refers to heritable changes that are not encoded in the DNA sequence itself, but play an important role in the control of gene expression. In mammals, epigenetic mechanisms include changes in DNA methylation, histone modifications and non-coding RNAs. Although epigenetic changes are heritable in somatic cells, these modifications are also potentially reversible, which makes them attractive and promising avenues for tailoring cancer preventive and therapeutic strategies. Burgeoning evidence in the last decade has provided unprecedented clues that diet and environmental factors directly influence epigenetic mechanisms in humans. Dietary polyphenols from green tea, turmeric, soybeans, broccoli and others have shown to possess multiple cell-regulatory activities within cancer cells. More recently, we have begun to understand that some of the dietary polyphenols may exert their chemopreventive effects in part by modulating various components of the epigenetic machinery in humans. In this article, we first discuss the contribution of diet and environmental factors on epigenetic alterations; subsequently, we provide a comprehensive review of literature on the role of various dietary polyphenols. In particular, we summarize the current knowledge on a large number of dietary agents and their effects on DNA methylation, histone modifications and regulation of expression of the non-coding miRNAs in various in vitro and in vivo models. We emphasize how increased understanding of the chemopreventive effects of dietary polyphenols on specific epigenetic alterations may provide unique and yet unexplored novel and highly effective chemopreventive strategies for reducing the health burden of cancer and other diseases in humans.  相似文献   

13.
The genome is programmed by the epigenome, which is comprised of chromatin and a covalent modification of DNA by methylation. Epigenetic patterns are sculpted during development to shape the diversity of gene expression programs in the different cell types of the organism. The epigenome of the developing fetus is especially sensitive to maternal nutrition, and exposure to environmental toxins as well as psychological stress. It is postulated here that not only chemicals but also exposure of the young pup to social behavior, such as maternal care, could affect the epigenome. Since epigenetic programming defines the state of expression of genes, epigenetic differences could have the same consequences as genetic polymorphisms. We will propose here a mechanism linking maternal behavior and epigenetic programming and we will discuss the prospect that similar epigenetic variations generated during early life play a role in generating inter-individual differences in human behavior. We speculate that exposures to different environmental toxins, which affect the epigenetic machinery might alter long-established epigenetic programs in the brain.  相似文献   

14.
15.
Risk assessment of engineered nanomaterials (ENMs) is being hindered by the sheer production volume of these materials. In this regard, the grouping and ranking of ENMs appears as a promising strategy. Here we sought to evaluate the usefulness of in vitro systems based on fish cell lines for ranking a set of ENMs on the basis of their cytotoxicity. We used the topminnow (Poeciliopsis lucida) liver cell line (PLHC-1) and the rainbow trout (Oncorhynchus mykiss) fibroblast-like gonadal cell line (RTG-2). ENMs were obtained from the EU Joint Research Centre repository. The size frequency distribution of ENM suspensions in cell culture media was characterized. Cytotoxicity was evaluated after 24 h of exposure. PLHC-1 cells exhibited higher sensitivity to the ENMs than RTG-2 cells. ZnO-NM was found to exert toxicity mainly by altering lysosome function and metabolic activity, while multi-walled carbon nanotubes (MWCNTs) caused plasma membrane disruption at high concentrations. The hazard ranking for toxicity (ZnO-NM > MWCNT ≥ CeO2-NM = SiO2-NM) was inversely related to the ranking in size detected in culture medium. Our findings reveal the suitability of fish cell lines for establishing hazard rankings of ENMs in the framework of integrated approaches to testing and assessment.  相似文献   

16.
Background: Disease pathogenesis may result from genetic alterations and/or a more diverse group of epigenetic changes. While events such as DNA methylation are well established, there is significant interest in nucleosome remodeling, RNA interference and histone modifications, as mechanisms that underlie epigenetic effects. While genetic mutations are permanent, epigenetic changes can be transitory. The potential to reverse epigenetic changes has led to the development of therapeutic strategies targeting chromatin-modifying enzymes. Objective: To review the roles of chromatin-modifying enzymes in gene regulation and to highlight their potentials as therapeutic targets. Methods: This review is based on recently published literature and online resources. Results/conclusion: This paper focuses on enzymes responsible for histone acetylation, deacetylation, methylation and demethylation, and their potential as targets for epigenetic therapies. A subsequent paper will do the same for enzymes responsible for histone phosphorylation, ubiquitylation, SUMOylation and poly-ADP-ribosylation as well as ATP-dependent nucleosome remodeling.  相似文献   

17.
Benzene is an important industrial chemical that is also widely present in cigarette smoke, automobile exhaust, and gasoline. It is reported that benzene can cause hematopoietic disorders and has been recognized as a human carcinogen. However, the mechanisms by which it increases the risk of carcinogenesis are only partially understood. Aberrant DNA methylation is a major epigenetic mechanism associated with the toxicity of carcinogens. To understand the carcinogenic capacity of benzene, experiments were designed to investigate whether exposure to benzene and its metabolites would change the global DNA methylation status in human normal hepatic L02 cells and then to evaluate whether the changes would be induced by variation of DNA methyltransferase (DNMT) activity in HaeIII DNMT‐mediated methylation assay in vitro. Our results showed that hydroquinone and 1,4‐benzoquinone could induce global DNA hypomethylation with statistically significant difference from control (p < 0.05), but no significant global DNA methylation changes were observed in L02 cells with benzene, phenol, and 1,2,4‐trihydroxybenzene exposure. Benzene metabolites could not influence HaeIII DNMT activity except that 1,4‐benzoquinone shows significantly inhibiting effect on enzymatic methylation reaction at concentrations of 5 μM (p < 0.05). These results suggest that benzene metabolites, hydroquinone, and 1,4‐benzoquinone can disrupt global DNA methylation, and the potential epigenetic mechanism by which that global DNA hypomethylation induced by 1,4‐benzoquinone may work through the inhibiting effects of DNMT activity at 10 μM (p < 0.05). © 2011 Wiley Periodicals, Inc. Environ Toxicol 29: 108–116, 2014.  相似文献   

18.
A systematic, tiered approach to assess the safety of engineered nanomaterials (ENMs) in foods is presented. The ENM is first compared to its non-nano form counterpart to determine if ENM-specific assessment is required. Of highest concern from a toxicological perspective are ENMs which have potential for systemic translocation, are insoluble or only partially soluble over time or are particulate and bio-persistent. Where ENM-specific assessment is triggered, Tier 1 screening considers the potential for translocation across biological barriers, cytotoxicity, generation of reactive oxygen species, inflammatory response, genotoxicity and general toxicity. In silico and in vitro studies, together with a sub-acute repeat-dose rodent study, could be considered for this phase. Tier 2 hazard characterisation is based on a sentinel 90-day rodent study with an extended range of endpoints, additional parameters being investigated case-by-case. Physicochemical characterisation should be performed in a range of food and biological matrices. A default assumption of 100% bioavailability of the ENM provides a ‘worst case’ exposure scenario, which could be refined as additional data become available. The safety testing strategy is considered applicable to variations in ENM size within the nanoscale and to new generations of ENM.  相似文献   

19.
There has been a growing concern that epigenetic events, that is, heritable changes in gene expression superimposed on DNA nucleotide sequences, may be involved in chemically and/or nutritionally mediated adverse health outcomes, such as reproductive toxicity and cancer. This concern has been driven by an increasing number of studies reporting toxicant-induced alterations to the epigenome in the form of changes in DNA methylation, histone/chromatin remodeling, and altered expression of non-coding RNAs. These three major mechanisms of epigenetic modifications may have coordinated, independent, or potentially antagonistic influences on gene expression. Complicating this understanding is the incomplete understanding of the normal state and dynamic variation of the epigenome, which differs widely between cells, tissues, developmental state, age, strain, and species. This review serves as a framework to outline characteristics composing an ideal epigenetic screen(s) for hazard identification in product safety assessment. In order to implement such a screen, first there needs to be a better understanding of adaptive versus adverse changes in the epigenome, which includes identification of robust and reproducible causal links between epigenetic changes and adverse apical end points, and second development of improved reporter assay tools to monitor such changes. An ideal screen would be in vitro-based, medium- to high-throughput, and assess all three branches of epigenome control (i.e. methylation, histone modifications, non-coding RNAs), although also being quantitative, objective, portable (i.e. lab to lab), and relevant to humans.  相似文献   

20.
Use of multi-walled carbon nanotubes (MWCNT) is growing which increases occupational exposures to these materials. Their toxic potential makes it important to have an in-depth understanding of the inflammation and disease that develops due to exposure. Epigenetics is one area of interest that has been quickly developing to assess disease processes due to its ability to change gene expression and thus the lung environment after exposure. In this study, promoter methylation of inflammatory genes (IFN-γ and TNF-α) was measured after MWCNT exposure using the pyrosequencing assay and found to correlate with initial cytokine production. In addition, methylation of a gene involved in tissue fibrosis (Thy-1) was also altered in a way that matched collagen deposition. In addition to using epigenetics to better understand disease processes, it has also been used as a biomarker of exposure and disease. In this study, global methylation was determined in the lung to ascertain whether MWCNT alter global methylation at the site of exposure and if those alterations coincide with disease development. Then, global methylation levels were determined in the blood to ascertain whether global methylation could be used as a biomarker of exposure in a more easily accessible tissue. Using the LuUminometric Methylation Assay (LUMA) and 5-Methylcytosine (5-mC) Quantification assay, we found that MWCNT lead to DNA hypomethylation in the lung and blood, which coincided with disease development. This study provides initial data showing that alterations in gene-specific methylation correspond with an inflammatory response to MWCNT exposure. In addition, global DNA methylation in the lung and blood coincides with MWCNT-induced disease development, suggesting its potential as a biomarker of both exposure and disease development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号