首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hydrophobic interaction chromatography (HIC) is increasingly used for protein purification, separation and other biochemical applications. The aim of this study was to prepare hydrophobic microbeads and to investigate their recombinant human interferon-α (rHuIFN-α) adsorption capability. For this purpose, we had synthesized functional monomer, N-methacryloyl-l-phenylalanine (MAPA), to provide a hydrophobic functionality to the adsorbent. The poly(2-hydroxyethyl methacrylate-N-methacryloyl-l-phenylalanine) [poly(HEMA–MAPA)] microbeads were prepared by suspension copolymerization. microbeads were characterized using FTIR, swelling behavior, and SEM micrographs. Equilibrium swelling ratio of poly(HEMA–MAPA) and poly(HEMA) microbeads were 53.3% and 69.3%, respectively. The specific surface area and average pore diameters determined by BET apparatus were 17.4 m2/g and 47.3 Å for poly(HEMA) microbeads and 18.7 m2/g and 49.8 Å for poly(HEMA–MAPA) microbeads. Adsorption experiments were performed under different conditions. Maximum rHuIFN-α adsorption capacity was found to be 137.6 ± 6.7 mg/g by using poly(HEMA–MAPA) microbeads with a size range of 150–250 μm and containing 327 μmol MAPA/g microbeads. Compared with poly(HEMA–MAPA) microbeads, nonspecific rHuIFN-α adsorption onto plain poly(HEMA) microbeads was very low, about 4.2 ± 2.3 mg/g. To determine the effects of adsorption conditions on possible conformational changes of rHuIFN-α structure, fluorescence spectrophotometry was employed. Repeated adsorption–elution processes showed that these microbeads are suitable for repeatable rHuIFN-α adsorption.  相似文献   

2.
Supermacroporous cryogel with an average pore size of 10–200 μm in diameter was prepared by cryopolymerization of N-methacryloyl-(l)-glutamic acid (MAGA) and 2-hydroxyethyl methacrylate (HEMA). The poly(HEMA–MAGA) cryogel was characterized by surface area measurements, FTIR, swelling studies, elemental analysis and SEM. The poly(HEMA–MAGA) cryogel had a specific surface area of 23.2 m2/g. The equilibrium swelling ratio of the cryogel is 9.68 g H2O/g for poly(HEMA–MAGA) and 8.56 g H2O/g cryogel for PHEMA. The poly(HEMA–MAGA) cryogel disks with a pore volume of 71.6% containing 878 μmol MAGA/g were used in the removal of UO22+ from aqueous solutions. Adsorption equilibrium of UO22+ was obtained in about 30 min. The adsorption of UO22+ ions onto the PHEMA cryogel disks was negligible (0.78 mg/g). The MAGA incorporation significantly increased the UO22+ adsorption capacity (92.5 mg/g). The adsorption process is found to be a function of pH of the UO22+ solution, with the optimum value being pH 6.0. Adsorption capacity of MAGA contained PHEMA based cryogel disks increased significantly with pH and then reached the maximum at pH 6.0. Consecutive adsorption and elution cycles showed the feasibility of repeated use for poly(HEMA–MAGA) cryogel disks.  相似文献   

3.
In this study, poly(2-hydroxyethyl methacrylate–glycidylmethacrylate) [poly(HEMA–GMA)] cryogels were prepared by radical cryocopolymerization of HEMA with GMA as a functional comonomer and N,N′-methylene-bisacrylamide (MBAAm) as a crosslinker. Iminodiacetic acid (IDA) functional groups were attached via ring opening of the epoxy group on the poly(HEMA–GMA) cryogels and then Zn(II) ions were chelated with these structures. Characterization of cryogels was performed by FTIR, SEM, EDX and swelling studies. These cryogels have interconnected pores of 30–50 μm size. The equilibrium swelling degree of Zn(II) chelated poly(HEMA–GMA)-IDA cryogels was approximately 600%. Zn(II) chelated poly(HEMA–GMA)-IDA cryogels were used in the adsorption of alcohol dehydrogenase from aqueous solutions and adsorption was performed in continuous system. The effects of pH, alcohol dehydrogenase concentration, temperature, and flow rate on adsorption were investigated. The maximum amount of alcohol dehydrogenase adsorption was determined to be 9.94 mg/g cryogel at 1.0 mg/mL alcohol dehydrogenase concentration and in acetate buffer at pH 5.0 with a flow rate of 0.5 mL/min. Desorption of adsorbed alcohol dehydrogenase was carried out by using 1.0 M NaCI at pH 8.0 phosphate buffer and desorption yield was found to be 93.5%. Additionally, these cryogels were used for purification of alcohol dehydrogenase from yeast with a single-step. The purity of desorbed alcohol dehydrogenase was shown by silver-stained SDS–PAGE. This purification process can successfully be used for the purification of alcohol dehydrogenase from unclarified yeast homogenates and this work is the first report about the usage of the cryogels for purification of alcohol dehydrogenase.  相似文献   

4.
The aim of this study is to prepare silanized polymeric nanoparticles for DNA isolation. Polymeric p(HEMA)-IMEO-PBA nanoparticles around 85.7 nm diameter, was obtained by surfactant free emulsion polymerization for DNA isolation. Synthesized nanoparticles for characterization studies were realized scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Zeta-size. Surface area, average particle size and size distribution were also performed. The surface area of synthesized silanized polymeric nanoparticles was 2460 m2/g. Synthesized polymeric nanoparticles were silanized with 3-(2-imidazoline-1-yl)propyl (triethoxysilane) (IMEO). After that, phenylboronic acid (PBA) which is DNA specific ligand were covalently binded to silanized polymeric nanoparticles. The amount of DNA adsorbed onto the p(HEMA)-IMEO-PBA nanoparticles first increased and then reached a saturation value at around 14.0 mg/mL of DNA concentration. The maximum adsorption was 672.41 mg/g silanized polymeric nanoparticles in the optimum adsorption medium. The maximum DNA adsorption was achieved at 4 °C. The overall recovery of DNA was calculated as 95%. In repetitive adsorption–desorption circles, it is observed not being important decrease in DNA adsorption capacities. The results were shown that silanized polymeric nanoparticles can be a good alternative for DNA isolation.  相似文献   

5.
In the paper we present the synthesis of Co hollow nanospheres by surfactant-assisted hydrothermal method at mild condition. The XRD pattern indicates the sample is hexagonal close-packed (hcp) Co with cell constants a = 2.512 Å and c = 4.102 Å. The Co hollow nanospheres have the outer diameter of about 50–200 nm with the thin wall of 10–20 nm. Room temperature magnetic measurement of the Co hollow nanospheres demonstrates its enhanced ferromagnetic property. The surfactant CTAB might play a vital role in the formation of the hollow Co nanospheres, and simply adapting different reaction temperatures can control the size of these hollow nanospheres. The possible formation mechanism was also discussed.  相似文献   

6.
Nb2O5 hollow nanospheres of average diameter ca. ~29 nm and hollow cavity size ca. 17 nm were synthesized using polymeric micelles with core–shell–corona architecture under mild conditions. The hollow particles were thoroughly characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), infrared spectroscopy (FTIR), thermal (TG/DTA) and nitrogen adsorption analyses. Thus obtained Nb2O5 hollow nanospheres were investigated as anode materials for lithium ion rechargeable batteries for the first time. The nanostructured electrode delivers high capacity of 172 mAh g?1 after 250 cycles of charge/discharge at a rate of 0.5 C. More importantly, the hollow particles based electrodes maintains the structural integrity and excellent cycling stability even after exposing to high current density 6.25 A g?1. The enhanced electrochemical behavior is ascribed to hollow cavity coupled with nanosized Nb2O5 shell domain that facilitates fast lithium intercalation/deintercalation kinetics.  相似文献   

7.
In this study, a novel approach combing the chelation and covalent binding was explored for facile and efficient enzyme immobilization. The unique capability of titania to chelate with catecholic derivatives at ambient conditions was utilized for titania surface functionalization. The functionalized titania was then used for enzyme immobilization. Titania submicrospheres (500–600 nm) were synthesized by a modified sol–gel method and functionalized with carboxylic acid groups through a facile chelation method by using 3-(3,4-dihydroxyphenyl) propionic acid as the chelating agent. Then, catalase (CAT) was covalently immobilized on these functionalized titania submicrospheres through 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) coupling reaction. The immobilized CAT retained 65% of its free form activity with a loading capacity of 100–150 mg/g titania. The pH stability, thermostability, recycling stability and storage stability of the immobilized CAT were evaluated. A remarkable enhancement in enzyme stability was achieved. The immobilized CAT retained 90% and 76% of its initial activity after 10 and 16 successive cycles of decomposition of hydrogen peroxide, respectively. Both the Km and the Vmax values of the immobilized CAT (27.4 mM, 13.36 mM/min) were close to those of the free CAT (25.7 mM, 13.46 mM/min).  相似文献   

8.
A facile method for PEGylated bioreducible poly(amido amine)s is described by a one-pot Michael-type addition polymerization of N, N′-cystaminebisacrylamide (CBA) with a mixture of 4-amino-1-butanol (ABOL) and mono-tert-butoxycarbonyl (Boc) PEG diamine. By this approach, two Boc-amino-PEGylated p(CBA-ABOL) copolymers were obtained with the PEG/ABOL composition ratio of 1/10 (1a) and 1/6 (2a), respectively. These copolymers were characterized by 1H NMR and gel permeation chromatography. The PEGylated copolymers 1a, and its deprotected analog 1b with a terminal amino group at the PEG chain, were further evaluated as gene delivery vectors. The copolymers 1a and 1b condense DNA into nano-scaled PEGylated polyplexes (< 250 nm) with near neutral (2–5 mV, 1a) or slightly positive (9–13 mV, 1b) surface charge which remain stable in 150 mM buffer solution over 24 h. UnPEGylated polyplexes from p(CBA-ABOL), however, are relatively less stable and increase in size to more than 1 μm. The PEGylated polyplexes showed very low cytotoxicity in MCF-7 and NIH 3T3 cells and induced appreciable transfection efficiencies in the presence of 10% serum, although that are lower than those of p(CBA-ABOL) lacking PEG. The lower transfection efficiency of the PEGylated p(CBA-ABOL) polyplexes is discussed regarding the effect of PEGylation on endosomal escape of the PEGylated polyplexes.  相似文献   

9.
Thermogravimetric analysis (TGA) with simultaneous differential thermal analysis (DTA) of R2SnL2 (R = methyl (1), n-butyl (2), n-octyl (3) and phenyl (4)) and R3SnL (R = methyl (5), n-propyl (6), n-butyl (7) and phenyl (8); L = anion of 5-amino-3H-1,3,4-thiadiazole-2-thione) show that in air and nitrogen, diorganotin(IV) thiadiazolates decompose in a different manner, whereas triorganotin(IV) thiadiazolates decompose in a similar way. The decomposition of di- and triorganotin(IV) thiadiazolates occur in two or three steps. The first step of decomposition corresponds to the loss of a ligand/a part of ligand moiety, which is followed by the loss of remaining ligand moiety (in case of diorganotin(IV) thiadiazolates) and the organic groups attached to tin. In case of compounds (3) and (5), tin is partially lost to the gas phase due to sublimation. The residues obtained by thermal decomposition of these compounds are SnS and/or Sn in nitrogen and SnO2 in air, which are characterized by infrared (IR), far-infrared (far-IR), X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). Mathematical analysis of thermogravimetric analysis data shows that the first step of decomposition in compounds (4), (6) and (8) in both air and nitrogen follows first order kinetics. Kinetic and thermodynamic data, such as energy of activation (E*), pre-exponential factor (A), entropy of activation (S*), free energy of activation (G*) and enthalpy of activation (H*) of the first step of decomposition have also been calculated.  相似文献   

10.
The aim of this study is to prepare poly(hydroxyethyl methacrylate-N-methacryloyl-(L)-histidine) [PHEMAH] magnetic nanoparticles for plasmid DNA (pDNA) purification from Escherichia coli (E. coli) cell lysate. Magnetic nanoparticles were produced by surfactant free emulsion polymerization. mPHEMAH nanoparticles were characterized by elemental analysis, Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), vibrating sample magnetometer (VSM), electron spin resonance (ESR), thermogravimetric analyses (TGA) and transmission electron microscopy (TEM). Surface area, average particle size and size distribution were also performed. Specific surface area of the mPHEMAH nanoparticles was found to be 1180 m2/g. Elemental analysis of MAH for nitrogen was estimated as 0.18 mmol/g polymer. The amount of pDNA adsorbed onto the mPHEMAH nanoparticles first increased and then reached a saturation value at around 1.0 mg/mL of pDNA concentration. Compared with the mPHEMA nanoparticles (50 μg/g polymer), the pDNA adsorption capacity of the mPHEMAH nanoparticles (154 mg/g polymer) was improved significantly due to the MAH incorporation into the polymeric matrix. The maximum pDNA adsorption was achieved at 25 °C. The overall recovery of pDNA was calculated as 92%. The mPHEMAH nanoparticles could be used six times without decreasing the pDNA adsorption capacity significantly. The results indicate that the PHEMAH nanoparticles promise high selectivity for pDNA.  相似文献   

11.
To obtain hydroxypropyl methyl cellulose phthalate (HPMCP)/insulin nanospheres by supercritical antisolvent process, the formation of HPMCP nanoparticles was first investigated. The effects of ratio of the mixed solvent, pressure, temperature, concentration, flow rate of CO2 and solution on forming HPMCP nanoparticles are discussed. It was found that different morphologies of HPMCP could be produced by varying the ratio of DMSO to acetone in the solvent. The operating parameters were optimized for making HPMCP nanoparticles. Formation of HPMCP/insulin nanospheres was further inspected. The nanospheres with the size ranging from 138 nm to 342 nm were obtained. The loading of insulin in the nanospheres ranged from 10.76% to 16.04% and the encapsulation efficiency reached 100%. The release of insulin is also discussed.  相似文献   

12.
Untreated Pinus halepensis sawdust has been investigated as an adsorbent for the removal of cadmium from aqueous solutions. Batch experiments were carried out to investigate the effect of pH, adsorbent dose, contact time, and metal concentration on sorption efficiency. The favorable pH for maximum cadmium adsorption was at 9.0. For the investigated cadmium concentrations (1–50 mg/L), maximum adsorption rates were achieved almost in the 10–20 min of contact. An adsorbent dose of 10 g/L was optimum for almost complete cadmium removal within 30 min from a 5 mg/L cadmium solution. For all contact times, an increase in cadmium concentration resulted in decrease in the percent cadmium removal (100–87%), and an increase in adsorption capacity (0.11–5.36 mg/g). The equilibrium adsorption data were best fitted with the Freundlich isotherm (R2 = 0.960). The kinetics of cadmium adsorption was very well described by the pseudo-second-order kinetic model (R2 > 0.999).  相似文献   

13.
Oligo and polyesters were prepared from epoxidized oleic acid (EOA) and methyl oleate (EMO) in polymerization reaction with cis-1,2-cyclohexanedicarboxylic anhydride (CH) and triethylamine (TEA) as the initiator at 165 °C for 3 h. In order to increase the molecular weight of the products, a small amount of butanodiol diglycidil ether (BDGE) was added. The different steps of the reactions were elucidated by nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). These same techniques as well as size exclusion chromatography (SEC), thermogravimetric analysis (TGA) and electric impedance spectroscopy (EIS) were used to characterize the products of the EMO/CH/TEA, EMO/CH/BDGE/TEA, EOA/CH/TEA and EOA/CH/BDGE/TEA reaction systems. The formation of internal ester groups was confirmed by NMR and FTIR. The Mw products are between 2500 g/mol and 85000 g/mol. The ΔΗ values are 44.6 KJ/ee and 42.7 KJ/ee for the EOA and EMO systems, respectively. The thermal degradations of the products start at temperatures higher than 180 °C. All of the products reveal glass transitions between ? 57 °C and ? 14 °C, while the EMO ones also present crystallization-like behavior at ? 7 °C and 3 °C. The dielectric properties of the products include very high resistivity and low capacitance.  相似文献   

14.
Biomorphic porous nanocrystalline-calcium titanate (SPCTO) was successfully prepared using the sol–gel method and with sorghum straw as the template. Characterization was conducted through XRD, SEM and FTIR. The ability of SPCTO to adsorb nickel ion in water was assessed. Elution and regeneration conditions, as well as the thermodynamics and kinetics of nickel adsorption, were also investigated. The result showed that the sorbent by the sol–gel template method was porous and has a perovskite structure with an average particle diameter of 26 nm. The nickel ion could be quantitatively retained at a pH value range of 4–8, but the adsorbed nickel ion could be completely eluted using 2 mol L? 1 HNO3. The adsorption capacity of SPCTO for nickel was found to be 51.814 mg g? 1 and the adsorption behavior followed a Langmuir adsorption isotherm and a pseudo-second-order kinetic model. The enthalpy change (ΔH) of the adsorption process was 33.520 kJ mol? 1. At various temperatures, Gibbs free energy changes (ΔG) were negative, and entropy changes (ΔS) were positive. The activation energy (Ea) was 25.291 kJ mol? 1 for the adsorption. These results demonstrate that the adsorption was an endothermic and spontaneous physical process. This same method has been successfully applied in the preconcentration and determination of nickel in water and food samples with good results.  相似文献   

15.
A complex magnetic order of the multiferroic compound Co3TeO6 has been revealed by neutron powder diffraction studies on ceramics and crushed single crystals. The compound adopts a monoclinic structure (s.g. C2/c) in the studied temperature range 2–300 K but exhibits successive antiferromagnetic transitions at low temperature. Incommensurate antiferromagnetic order with the propagation vector k1 = (0, 0.485, 0.055) sets in at 26 K. A transition to a second antiferromagnetic structure with k2 = (0, 0, 0) takes place at 21.1 K. Moreover, a transition to a commensurate antiferromagnetic structure with k3 = (0, 0.5, 0.25) occurs at 17.4 K. The magnetic structures have been determined by neutron powder diffraction using group theory analysis as a preliminary tool. Different coordinations of the Co2+ ions involved in the low-symmetry C2/c structure of Co3TeO6 render the exchange-interaction network very complex by itself. The observed magnetic phase transformations are interpreted as an evidence of competing magnetic interactions. The temperature dependent changes in the magnetic structure, derived from refinements of high-resolution neutron data, are discussed and possible mechanisms connected with the spin reorientations are described.  相似文献   

16.
Supermacroporous poly(2-hydroxyethyl methacrylate) (PHEMA) cryogel carrying DNA was used in the removal of anti-dsDNA antibodies from systemic lupus erythematosus (SLE) patient plasma. The PHEMA cryogel was prepared by bulk polymerization which proceeds in an aqueous solution of monomer frozen inside a plastic syringe. After thawing, the PHEMA cryogel contains a continuous matrix having interconnected macropores of 10–200 μm size. Pore volume in the PHEMA cryogel was 67.5%. Ester groups in the PHEMA structure were converted to imine groups by reacting with poly(ethyleneimine) (PEI) in the presence of NaHCO3. Amino (? NH2) content of PEI-modified PHEMA cryogel was determined as 82 mg PEI/g. Then, DNA was attached onto the PHEMA cryogel via amino groups (53.4 mg DNA/g cryogel). Anti-dsDNA-antibody concentration declined significantly from 780 IU/ml to 80 IU/ml with the time. The maximum anti-dsDNA-antibody adsorption amount was 70 × 103 IU/g. Anti-dsDNA-antibodies could be repeatedly adsorbed and eluted without noticeable loss in the anti-dsDNA-antibody adsorption amount.  相似文献   

17.
Four new multi-branched two-photon absorption chromophores, namely 1-(4-bromobenzal)-3,5-bis(4-((E)-2-(pyridin-4-yl)vinyl)phenyl)benzene (4), tris(4-((E)-2-(pyridin-4-yl)vinyl)phenyl)-benzene (5), 6-chloro-N2,N4-bis(4-((E)-2-(pyridin-4-yl)vinyl)phenyl)-1,3,5-triazine-2,4-diamine (6), tris-[4-(2-pyridin-4-yl-vinyl)-phenyl]-amine (7), have been synthesized and characterized. One-photon fluorescence, fluorescent quantum yields and two-photon fluorescence have been investigated. The experimental two-photon absorption cross-sections of 47 in DMF are 6, 11, 13 GM (pumped by 740 nm laser) and 19 GM (pumped by 800 nm laser), respectively. The calculated two-photon absorption cross-sections of 47 are 5.41, 7.67, 9.57 and 76.14 GM, respectively. The two-photon induced fluorescent peak wavelengths of 47 in DMF are 421, 425, 474 and 534 nm pumped by 680, 680, 740 and 800 nm laser, respectively. The results show that molecule 7 is a good two-photon absorption fluorophore possessing long two-photon fluorescent lifetime, good fluorescent quantum yield and large two-photon absorption cross-section. The two-photon absorption peak wavelength of molecule 7 is at 800 nm, which is favourable for initiating two-photon photopolymerization.  相似文献   

18.
Cholesterol esterase (CE, cholesteryl ester hydrolase, EC 3.1.1.13) from porcine pancreas (molecular weight 400–500 kDa) exhibits hydrolytic activity toward various toxic organic phthalate esters. CE was confined in the nanospace (diameter 3–30 nm) of five types of mesoporous silica (MPS) that differ in structural properties such as pore diameter, pore volume, and particle morphology. These structural properties were characterized by transmission electron microscopy, small-angle X-ray diffraction, N2 adsorption–desorption experiments, solid-state 13C nuclear magnetic resonance (NMR), and solid-state 29Si NMR. Catalytic activities of immobilized and free CE were evaluated by the hydrolysis of diethyl phthalate in phosphate buffer solutions containing an organic cosolvent. Optimal activity recovery was achieved when CE was immobilized in n-decane-functionalized MPS, which had a large pore size (22.5 nm). The immobilization also protected against effects of temperature within the range 30 °C–60 °C; CE immobilized in n-decyl-functionalized MPS exhibited better thermal stability than in non-functionalized MPS or free CE. Moreover, it retained approximately 60% of its catalytic activity even after six catalytic cycles.  相似文献   

19.
Herein we report on the syntheses, photophysico-chemical properties and nonlinear absorption parameters of bis-{1(4), 8(11), 15(18), 22(25)-(tetrapyridin-2-yloxy phthalocyaninato)} ytterbium (III) (3) and bis-{1(4), 8(11), 15(18), 22(25)-(tetrapyridin-4-yloxy phthalocyaninato)} ytterbium (III) (4). The fluorescence and singlet oxygen quantum yields obtained for complexes 3 and 4 are low. The triplet quantum yield obtained for complex 3 is high at ΦT = 0.89 whereas for complex 4 ΦT = 0.48. The third order optical susceptibility values are of the order: 10−11 esu (for complex 3), and 10−13 esu (for complex 4) while the hyperpolarizability values are of the order: 10−28 esu (for complex 3) and 10−31 esu (for complex 4). Complexes 3 and 4 show two-photon absorption coefficients of the order of 10−46 cm4 s/photon and 10−48 cm4 s/photon, and threshold intensities as low as 0.3 J cm−2 and 0.0045 J cm−2, respectively.  相似文献   

20.
A sensitive biosensor for chloropyrifos (CPF), an organophosphorus pesticide, was developed by immobilizing acetylcholinesterase (AChE) through covalent bonding to an oxidized exfoliated graphite nanoplatelet (xGnPs)–chitosan cross-linked composite. Because of the increased surface area and the conductive properties of the nanomaterial, AChE developed a high affinity for acetylthiocholine (ATCI) and formed thiocholine with a fast response. The response of the sensor was a linear function of ATCI concentration in two segments, one from 0.005 to 0.039 mM and the second from 0.064 mM to 0.258 mM. The corresponding equation for the first range was ip(A) = 2.26 × 10? 5c + 4.39 × 10? 7 (R2 = 0.992) and the equation for the second was ip(A) = 6.80 × 10? 6c + 1.30 × 10? 6 (R2 = 1.000), with a detection limit of 1.58 × 10? 10 M. The fabrication of the sensor was simple, the response was fast and the stability acceptable. This sensor has many potential applications, the foremost being in organophosphorus pesticides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号