首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 643 毫秒
1.
The purpose of this article is that the silica‐modified SBR/BR blend replaces natural rubber (NR) in some application fields. The styrene‐butadiene rubber (SBR) and cis‐butadiene rubber (BR) blend was modified, in which silica filler was treated with the r‐Aminopropyltriethoxysilane (KH‐550) as a coupling agent, to improve mechanical and thermal properties, and compatibilities. The optimum formula and cure condition were determined by testing the properties of SBR/BR blend. The properties of NR and the silica‐modified SBR/BR blend were compared. The results show that the optimum formulawas 80/20 SBR/BR, 2.5 phr dicumyl peroxide (DCP), 45 phr silica and 2.5 mL KH‐550. The best cure condition was at 150°C for 25 min under 10 MPa. The mechanical and thermal properties of SBR/BR blend were obviously modified, in which the silica filler treated with KH‐550. The compatibility of SBR/BR blend with DCP was better than those with benzoyl peroxide (BPO) and DCP/BPO. The crosslinking bonds between modified silica and rubbers were proved by Fourier transform infrared analysis, and the compatibility of SBR and BR was proved by polarized light microscopy (PLM) analysis. The silica‐modified SBR/BR blend can substitute for NR in the specific application fields. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

2.
In this study, the reinforcement performance of the modified silicas prepared through the incorporation of 3‐aminopropyltriethoxy silane (AP) and further reaction of bisphenol A diglycidyl ether (BG) to styrene‐butadiene/butadiene rubber (SBR/BR) compounds was investigated to discuss the effect of surface and networked states on the properties of silica‐filled rubber compounds. The adjustment of the ratio of BG to AP varied the surface and networked states of silica. The amino and glycidyl groups dispersed on the silica and the networks formed on/between silica particles considerably influenced the properties of SBR/BR compounds reinforced with the modified silicas. The presence of amino group increased viscosity of the rubber compounds due to the attrition between rubber chains and silica particles, while the entanglement of rubber chains with the networks successfully improve both wet traction and rolling resistance, without sacrificing the fundamental properties of the rubber compounds, even though no coupling agents were applied. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44893.  相似文献   

3.
The establishment of prediction model for abrasion properties of vulcanizates, based on their simple physio‐mechanical properties, is a hot research field in tribology. The hardness (H), resilience (R), and dynamic fatigue fracture parameters (m) of rubber vulcanizates were combined together in this article, named as hardness–resilience product (HmR), and its relationships with the abrasion loss for various vulcanizates [natural rubber (NR), styrene–butadiene rubber (SBR), butadiene rubber (BR), and their blends] was investigated by using Akron and DIN abrader. The results showed that, for NR/SBR blends with different SBR content, compared with log(H4R), the abrasion loss had much better linear relationship with log(HmR) for both Akron and DIN abrasion. This good linear relationship, for both Akron and DIN abrasion, also appeared in the SBR/BR blends with different BR content. Furthermore, for both blending systems (NR/SBR and SBR/BR), when all the data above were put together, the abrasion loss also had good linear relationships with its log(HmR) no matter for Akron or DIN abrasion, which indicated that this linear relationship had some universality. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1212‐1219, 2013  相似文献   

4.
BACKGROUND: Tack and green strength of filled and gum (unfilled) natural rubber (NR), poly(styrene‐co‐butadiene) rubber (SBR), polybutadiene rubber (BR) and (SBR‐BR) blend with different loadings of reinforcement agent, silanized silica nanofiller (Coupsil 8113), were studied and the results compared and discussed. RESULTS: It was found that silica was fully dispersed in rubber matrix after 13 min of mixing. In addition, with some exceptions for NR and (SBR‐BR) blend, filler loading decreased the tack strength of the studied filled rubbers. Green strength and Mooney viscosity increased with filler loading for all studied filled rubbers but with different rates and amounts. The optimum filler loadings for NR and (SBR‐BR) filled blend were 30 and 10 phr, respectively. Tacks of NR filled rubbers were much higher than those of synthetic filled rubbers. CONCLUSION: It was concluded that filler loading alters substantially the tack and green strength of the rubbers under investigation. Copyright © 2009 Society of Chemical Industry  相似文献   

5.
The Fourier transformed infrared (FTIR) spectroscopy on the rubber‐filler gel has been used as a tool for the quantitative characterization of the phase selective silica localization in styrene butadiene rubber (SBR)/natural rubber (NR) blends. The so‐called rubber‐layer L was introduced to describe the selective wetting behavior of the rubber phases to the filler. SBR/NR blends filled with silica were the focus of the experimental investigation. NR shows a higher wetting rate than SBR. Silane addition does not affect the wetting of NR but slowdowns the wetting of SBR. With increasing chamber temperature the value of the rubber‐layer L of all mixtures increases owing to the different thermal activated rubber‐filler bonding processes. Using the wetting concept the kinetics of silica localization in the phases of heterogeneous rubber blends was characterized. Because of the higher wetting rate of the NR component, in the first stage of mixing of NR/SBR blends more silica is found in the NR phase than in the SBR phase. In the next stage, silica is transferred from the NR phase to the SBR phase until the loosely bonded components of NR rubber‐layer are fully replaced by SBR molecules. POLYM. COMPOS., 31:1701–1711, 2010. © 2010 Society of Plastics Engineers.  相似文献   

6.
The rheocurves of silica-filled styrene–butadiene/polybutadiene rubber (SBR/BR) compounds containing 3-octadecyltriethoxy silane (OTES) and bis-[triethoxysilylpropyl]tetrasulfide (TESPT) were investigated to examine the effects of silica content and silanes on silica flocculation during mixing and cure. SBR/BR compounds without curatives were also prepared to infer the effect of cure on silica flocculation. The maximum torque of the compounds could be deconvoluted to individual source torques such as silica flocculation during mixing and cure, crosslinking of rubber, and coupling between rubber and silica by assuming the independence of silica flocculation from cure and coupling. Torque due to silica flocculation increased with the silica content of the SBR/BR compounds, but its effect was significantly reduced by the addition of OTES or TESPT. TESPT suppressed silica flocculation and facilitated coupling, thus yielding enhanced tensile properties. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48559.  相似文献   

7.
Silica as a reinforcement filler for automotive tires is used to reduce the friction between precured treads and roads. This results in lower fuel consumption and reduced emissions of pollutant gases. In this work, the existing physical interactions between the filler and elastomer were analyzed through the extraction of the sol phase of styrene–butadiene rubber (SBR)–butadiene rubber (BR)/SiO2 composites. The extraction of the sol phase from samples filled with carbon black was also studied. The activation energy (Ea) was calculated from differential thermogravimetry curves obtained during pyrolysis analysis. For the SBR–BR blend, Ea was 315 kJ/mol. The values obtained for the composites containing 20 and 30 parts of silica per hundred parts of rubber were 231 and 197 kJ/mol, respectively. These results indicated an increasing filler–filler interaction, instead of filler–polymer interactions, with respect to the more charged composite. A microscopic analysis with energy‐dispersive spectroscopy showed silica agglomerates and matched the decreasing Ea values for the SBR–BR/30SiO2 composite well. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2273–2279, 2005  相似文献   

8.
The application of nanosilica in high performance tire highly depends on its uniform dispersion in rubber matrix. A series of dispersible nanosilica (denoted as DNS) modified by diphenyl guanidine (denoted as DPG, a vulcanization accelerator) were synthesized by liquid phase in situ surface chemical modification. The structure of the as‐obtained DNS‐DPG fillers was investigated in relation to Fourier transform infrared spectrometric analysis, thermogravimetric analysis, dynamic light scattering test, and transmission electron microscopic observation. It was found that the rubber vulcanization accelerator DPG was successfully grafted onto the surface of nanosilica, thereby effectively preventing the silica nanoparticles from agglomeration and significantly reducing the average particle size. The reinforcing effect of the DPG‐modified DNS nano‐fillers for the solution polymerized styrene butadiene rubber/butadiene rubber (denoted as SSBR/BR) was dependent on the fraction of the modifier DPG; in particular, when the amount of modifier DPG is 135.25 mmol/kg (denoted as DNS‐DPG‐3), silica exhibited very homogeneous dispersion in the SSBR/BR matrix, which contributed to significantly enhancing the filler‐rubber compatibility. As a result, SSBR/BR/DNS‐DPG‐3 nanocomposite exhibited the best mechanical properties, integrated high abrasion resistance and low rolling resistance. The modified silica not only possessed the effect of accelerating the crosslinking reaction, but also showed the reinforcing effect. This could make it feasible for SSBR/BR/DNS‐DPG nanocomposite to find promising application in green tire tread. POLYM. ENG. SCI., 59:1270–1278 2019. © 2019 Society of Plastics Engineers  相似文献   

9.
A novel block mercaptosilane (3‐benzothiazolthio‐1‐propyltriethoxylsilane) (Silane‐M) was synthesized and characterized by Fourier transform infrared spectra, 1H nuclear magnetic resonance, and elemental analysis. Styrene–butadiene rubber (SBR)/silica composites were prepared with Silane‐M, and its effect on the properties of materials was studied. Results show that Silane‐M can substantially improve the dispersion of silica and strengthen the reinforcement of silica for SBR vulcanizates like anchors of silica to rubber matrix. As expected, it enhances the tensile, tear strength, dynamic compression property, and resistance to abrasion of SBR/silica composites. By adding Silane‐M into the system, SBR/silica composites get superior skid resistance and high glass transition temperature (Tg). © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
Migration behaviors of antiozonants in carbon black‐filled rubber vulcanizates with different rubber compositions of natural rubber (NR), styrene–butadiene rubber (SBR), and butadiene rubber (BR) were studied at constant temperatures of 40–100°C and outdoors. Three single rubber‐based vulcanizates, three biblends, and three triblends were used. N‐Phenyl‐N′‐isopropyl‐p‐phenylenediamine (IPPD) and N‐phenyl‐N′‐(1,3‐dimethylbutyl)‐p‐phenylenediamine (HPPD) were employed as antiozonants. Migration rates of the antiozonants became faster with increasing the temperature. The order of the migration rates in the single rubber‐based vulcanizates was BR > NR > SBR. The migration rates in the vulcanizates containing SBR, on the whole, increased with decreasing the SBR content, while those in the vulcanizates containing BR decreased with decreasing the BR content. Difference in the migration behaviors of the antiozonants depending on the rubber composition was explained both by the intermolecular interactions of the antiozonants with the matrix and by interface formed between dissimilar rubbers in the blends. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 237–242, 2001  相似文献   

11.
This article explored the possibility of using silica from fly‐ash particles as reinforcement in natural rubber/styrene–butadiene rubber (NR/SBR) vulcanizates. For a given silica content, the NR : SBR blend ratio of 1 : 1 (or 50 : 50 phr) exhibited the optimum mechanical properties for fly‐ash filled NR/SBR blend system. When using untreated silica from fly‐ash, the cure time and mechanical properties of the NR/SBR vulcanizates decreased with increasing silica content. The improvement of the mechanical properties was achieved by addition of Si69, the recommended dosage being 2.0 wt % of silica content. The optimum tensile strength of the silica filled NR/SBR vulcanizates was peaked at 10–20 phr silica contents. Most mechanical properties increased with thermal ageing. The addition of silica from fly‐ash in the NR/SBR vulcanizates was found to improve the elastic behavior, including compression set and resilience, as compared with that of commercial precipitated silica. Taking mechanical properties into account, the recommended dosage for the silica (FASi) content was 20 phr. For more effective reinforcement, the silica from fly‐ash particles had to be chemically treated with 2.0 wt % Si69. It was convincing that silica from fly‐ash particles could be used to replace commercial silica as reinforcement in NR/SBR vulcanizates for cost‐saving and environment benefits. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

12.
Polyglycidylmethacrylate grafted butadiene rubber (PGMA‐g‐BR) was synthesized by a graft solution copolymerization technique. The PGMA content was determined through titration against HBr. The PGMA‐g‐BR was blended with styrene butadiene rubber/butadiene acrylonitrile rubber (SBR/NBR) blends with different blend ratios. The SBR/NBR (50/50) blend was selected to examine the compatibility of such blends. Compatibility was examined using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and viscosity measurements. The scanning electron micrographs illustrate the change of morphology of the SBR/NBR rubber blend as a result of the incorporation of PGMA‐g‐BR onto that blend. The Tgs of SBR and NBR in the blend get closer upon incorporation of PGMA‐g‐BR 10 phr, which indicates improvement in blend homogeneity. The intrinsic viscosity (η) versus blend ratio graph shows a straight‐line relationship, indicating some degree of compatibility. Thermal stability of the compatibilized and uncompatibilized rubber blend vulcanizates was investigated by determination of the physicomechanical properties before and after accelerated thermal aging. Of all the vulcanizates with different blend ratios under investigation, the SBR/NBR (25/75) compatibilized blend possessed the best thermal stability. However, the SBR/NBR (75/25) compatibilized blend possessed the best swelling performance in brake fluid. The effect of various combinations of inorganic fillers on the physicomechanical properties of that blend, before and after accelerated thermal aging, was studied in the presence and absence of PGMA‐g‐BR. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1559–1567, 2006  相似文献   

13.
Rubber–rubber blends are used widely in industry, for example, in tire manufacture. It is often difficult to characterize interfaces in such rubber–rubber blends quantitatively because of the similarity in the chemical structure of the component rubbers. Here, a new method was suggested for the measurement of the weight fraction of the interface in rubber–rubber blends using modulated‐temperature differential scanning calorimetry (M‐TDSC). Quantitative analysis using the differential of the heat capacity, dCp/dT, versus the temperature signal from M‐TDSC allows the weight fraction of the interface to be calculated. As examples, polybutadiene rubber (BR)–natural rubber (NR), BR–styrene‐co‐butadiene rubber (SBR), SBR–NR, and nitrile rubber (NBR)–NR blend systems were analyzed. The interfacial content in these blends was obtained. SBR is partially miscible with BR. The cis‐structure content in BR has an obvious effect on the extent of mixing in the SBR–BR blends. With increasing styrene content in the SBR in the SBR–BR blends, the interface content decreases. NR is partially miscible with both BR and SBR. The NBR used in this research is essentially immiscible with NR. The maximum amount of interface was found to be at the 50:50 blend composition in BR–NR, SBR–BR, and SBR–NR systems. Quantitative analysis of interfaces in these blend systems is reported for the first time. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1791–1798, 2000  相似文献   

14.
The effects of surface modification of silicas by plasma‐polymerization coating, together with modification using a silane coupling agent for a comparison on the dispersion and physical properties of styrene–butadiene rubber (SBR) are reported. The chemical compositions of the plasma‐polymerization coating were characterized using FTIR and Auger spectrometer and it was found that the plasma coating was composed of C?C and C? H bonds. The surface modification of silica by either plasma polymerization or silane greatly improved the dispersion of silica particles in SBR vulcanizates. The plasma‐polymerization modification of silica improved the tensile modulus of SBR vulcanizates without deterioration of important basic properties such as tensile strength and elongation at break. © 2002 Society of Chemical Industry  相似文献   

15.
This work investigates mechanical properties of styrene‐butadiene rubber (SBR) composites incorporating magadiite (MGD), a synthetic layered silicate (Na2Si14O29·9H2O) with surface chemistry similar to precipitated silica used in tire tread formulations. Treatment with cetyltrimethylammonium (CTA+) expands the MGD layers and makes the interlayer face surfaces accessible to sulfur‐functional silane TESPT (Si69) and SBR, primarily during batch mixing. DMA and tensile testing of cured CMGD/SBR composites show that CTA‐treated MGD (CMGD) provides substantially higher levels of mechanical reinforcement than equivalent amounts of silica. However, CMGD/SBR composites exhibit larger loss tangent values above Tg, probably due to lower SBR‐SBR crosslink density resulting from interlayer trapping of sulfur released by Si69 during vulcanization. DMA and tensile testing also demonstrate Si69′s critical role in forming MGD‐SBR graft sites essential to mechanical reinforcement. Replacing silica with CMGD reduces composite weight without sacrificing tensile modulus, suggesting that use of CMGD in tire rubber formulations could improve vehicle energy efficiency. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44763.  相似文献   

16.
Silica has been established as one of the most promising materials in green tires. The filler–rubber interactions can increase the comprehensive performance of rubber composites. In this study, sodium silicate was used as the silicon source and hexamethyl disilazane (HMDS; molecular formula: C6H19NSi2) was used as a modifier to synthesize dispersible silica (DNS) via an in situ surface-modification method. The effects of the HMDS-capped silica on the properties of rubber–matrix composites made of styrene–butadiene rubber (SBR) and high-cis-polybutadiene rubber (BR9000 or BR) were investigated with Zeosil 1165MP (Z1165-MP; a commercial highly dispersible silica produced by Rhodia for the production of green tires in the rubber industry) as a reference. The results show that the SBR–BR–DNS composite was before the SBR–BR–Z1165-MP composite in increasing the tear strength and elongation at break and reducing the compression heat buildup. On the basis of the resulting properties, the reinforcing behaviors in the rubber–matrix composites were analyzed. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47763.  相似文献   

17.
Magadiite (MGD), a synthetic layered silicate (Na2Si14O29·9H2O) with surface chemistry similar to precipitated silica, was cation‐exchanged with three different organic cations to explore the effect of varying MGD layer spacing on the mechanical properties of MGD‐based styrene‐butadiene rubber (SBR) composites. This work also compares the mechanical properties of MGD/SBR composites with those formulated with montmorillonite (MMT) and precipitated silica. Dodecylpyridinium (DP+) produces greater expansion of MGD layers than cetyltrimethylammonium (CTA+); the resulting DP‐MGD/SBR composites have greater yield strain, toughness, and rubbery storage modulus than comparable CTA‐MGD/SBR composites. MGD treated with hexadecylammonium (HDA+) has the greatest layer spacing, but the HDA‐MGD layers collapse upon melt‐blending with SBR. CTA‐treated MMT (CMMT) exfoliates in aqueous suspension, but the platelets re‐stack upon drying and during melt‐blending with SBR. The presence of exfoliated and/or disordered platelet stacks in CMMT/SBR probably accounts for its higher tensile and dynamic moduli compared to MGD‐ and silica‐based SBR composites. Dynamic mechanical properties are used to predict tire tread performance metrics for these composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44764.  相似文献   

18.
The present work highlighted the effect of commonly used processing and curing additives on the wetting and dispersion kinetics of filler like silica and carbon black (CB) in some examples using the methods like the wetting concept and online measured electrical conductance. The adsorption of additives and mono-functional silane on silica surface increases the wetting speed of silica in single compound of nitrile butadiene rubber (NBR), natural rubber (NR) and styrene butadiene rubber (SBR) compounds. In rubber blend, for instance NBR/NR, the extent of filler surface fraction wetted by each blend component is strongly dependent on the additive/silica and silane/silica ratio r. A model based on the surface tension data of rubber components and filler (Z-model) was used for prediction of the selective filler wetting at a thermodynamic equilibrium state. By combining the experimental results from the wetting concept and theoretical prediction from the Z-model the silica surface tension changed during mixing can be characterized. It quantitatively describes the deactivation of the silanol groups on the silica surface by adsorbed additives. The effect of adsorption of additives on filler dispersion was exemplarily demonstrated on CB filled SBR compounds by means of the method of online measured electrical conductance. The influence of additives on the CB dispersion in low styrene-content SBR mixtures is much more pronounced than that in high styrene-content SBR mixtures.  相似文献   

19.
The hybrid of bamboo charcoal (BCC) and silica‐reinforced styrene‐butadiene rubber was prepared by a modified sol–gel method of hydrolyzing tetraethoxysilane over an acid catalyst. The fracture surface of the samples after tensile test was characterized by field emission‐scanning electron microscopy. The tensile strength, storage modulus, hardness, friction coefficient, and swelling test were discussed based on the samples with or without 3‐(methacryloxy) propyl trimethoxy silane modification. The results showed that the storage modulus clearly increased with the increasing of silica contents among the hybrid of BCC and silica‐reinforced samples. The storage modulus of the sample decreased after modification by 3‐(methacryloxy) propyl trimethoxy silane, indicating the improvement of the filler in SBR matrix. The tensile stress and the hardness both increased with the increasing of silica contents in the SBR matrix. Besides, the friction coefficient and the swelling ratio for the hybrid of BCC and silica‐reinforced SBR decreased with the decreasing of BCC contents in SBR matrix. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46219.  相似文献   

20.
With the increasing interest in environmental and health issues, legal restrictions, such as European Union (EU) End of Life Vehicle Directives, were strengthened. This led us to incorporate nano zinc oxide (nano‐ZnO), with particle sizes of 30–40 nm and specific surface areas of 25.0–50.0 m2/g, instead of conventional ZnO into natural rubber (NR)/butadiene rubber (BR) compounds to decrease the content of zinc in the formulation. In the unfilled system, only a 20 wt % nano‐ZnO content, compared to conventional zinc oxide content, showed the cure characteristics and mechanical properties of the same level. This was because the increase in the specific surface area of the nano‐ZnO led to an increase in the degree of crosslinking. The effect of nano‐ZnO on the cure characteristics and mechanical properties was more pronounced in the silica‐filled system than in the unfilled system. This was mainly because of the dispersing agent used in the silica‐filled system, which also improved the dispersion of nano‐ZnO. The silica‐filled NR/BR compounds containing 0.3–3.0 phr of nano‐ZnO showed improved curing characteristics and mechanical properties, such as optimum cure time, 100 and 300% modulus, tensile strength, and tear strength compared to the compound with 5 phr of conventional ZnO. The optimum amounts of nano‐ZnO and stearic acid were only 1.0 and 0.1 phr, respectively. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号