首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Uniconazole inhibits stress-induced ethylene in wheat and soybean seedlings   总被引:2,自引:0,他引:2  
Previous studies have shown that uniconazole inhibits ethylene synthesis and protects plants from various stresses. The present research was conducted to delineate the mechanism of ethylene inhibition by uniconazole [(E)-(p-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)-1-penten-3-ol]. Following heat stress of 48°C for 3 h, the shoots of the control wheat seedlings became desiccated, and the seedlings lost 23% of their fresh mass 8 h after stress. The control soybean seedlings had epinastic unifoliate leaves 5 h after foliar application (4.4 g.a.i./ha) of the herbicide triclopyr [(3,5,6-trichloro-2-pyridinyl)oxyacetic acid]. Soil drench applications of uniconazole, a potent member of the triazole family, reduced these symptoms associated with heat and herbicide stress in wheat (5.0 mg/L) and soybean (0.4 mg/L) seedlings, respectively.Basal ethylene production was inhibited 32 and 48% by uniconazole in the wheat and acotyledonous soybean seedlings, respectively. Following a 48°C heat stress, 1-aminocyclopropane-1-carboxylic acid (ACC) levels increased 40% in both the control and uniconazole-treated wheat seedlings. After triclopyr application, ACC levels increased 400% in both the control and uniconazoletreated soybean seedlings. The increased ACC levels, following stress, were accompanied by increased ethylene production from the control, but not from the uniconazole-treated wheat and acotyledonous soybean seedlings. Uniconazole treatment did not significantly change the basal or stress-induced N-malonyl-1-aminocyclopropane-1-carboxylic acid (MACC) levels compared to controls. These results suggest that uniconazole inhibits ethylene synthesis by interfering with the conversion of ACC to ethylene in wheat and acotyledonous soybean seedlings. Ethylene production and ACC conversion were not inhibited by uniconazole in excised soybean cotyledons. These results indicate that different ethylene-forming enzyme (EFE) systems operate in the soybean acotyledonous seedling and cotyledon, and the system in the former is inhibited by uniconazole.  相似文献   

2.
The characteristics of ethylene production and ACC conversion in 8-day-old soybean seedlings were examined and a relationship between cytochrome P-450 activity and ethylene-forming enzyme (EFE) activity was found. An atmosphere containing 10% carbon monoxide (CO) significantly inhibited ethylene production and ACC conversion in control soybean seedlings, but had only a slight effect on soybean seedlings treated with uniconazole. Foliar application of triclopyr, a pyridine analogue of the phenoxy herbicides, significantly increased ethylene production and ACC conversion in control, but not in uniconazoletreated seedlings. Triclopyr treatment also resulted in a three-fold increase in extractable cytochrome P-450 of 5-day-old etiolated soybeans. At equimolar concentrations tetcyclacis was more effective than uniconazole in reducing shoot elongation and endogenous ethylene production. Although uniconazole and tetcyclacis did not inhibit ACC conversion in nonherbicide-treated soybean seedlings, they did prevent the observed increase in ACC-dependent EFE activity following triclopyr application. However, the rate of ACC conversion in etiolated soybean segments was sensitive to uniconazole, and tetcyclacis inhibited the rate of ACC conversion by 2.6-fold in etiolated soybean segments within 4 h after treatment. Microsomal membranes were isolated from 5-day-old naphthalic anhydride-treated etiolated wheat shoots as this tissue contains much higher cytochrome P-450 levels than soybean shoots. Optical difference spectroscopy demonstrated that ACC generated binding spectrum characteristic of a reverse-type-I cytochrome P-450 substrate when combined with reduced microsomes. In vitro conversion of ACC to ethylene by microsomal membranes was NADPH-dependent, inhibited by CO, and had an apparent Km and Vmax of 45 M and 0.345 nl/mg protein/h, respectively. These results suggest that cytochrome P-450-mediated monooxygenase reactions may be intimately involved in the conversion of ACC to ethylene in young soybean and wheat seedlings.  相似文献   

3.
The microgravity environment of spaceflight influences growth, morphology and metabolism in etiolated germinating soybean. To determine if clinorotation will similarly impact these processes, we conducted ground-based studies in conjunction with two space experiment opportunities. Soybean (Glycine max [L.] Merr.) seeds were planted within BRIC (Biological Research In Canister) canisters and grown for seven days at 20 degrees C under clinorotation (1 rpm) conditions or in a stationary upright mode. Gas samples were taken daily and plants were harvested after seven days for measurement of growth and morphology. Compared to the stationary upright controls, plants exposed to clinorotation exhibited increased root length (125% greater) and fresh weight (42% greater), whereas shoot length and fresh weight decreased by 33% and 16% respectively. Plants grown under clinorotation produced twice as much ethylene as the stationary controls. Seedlings treated with triiodo benzoic acid (TIBA), an auxin transport inhibitor, under clinorotation produced 50% less ethylene than the untreated control subjected to the same gravity treatment, whereas a treatment with 2,4-D increased ethylene by five-fold in the clinorotated plants. These data suggest that slow clinorotation influences biomass partitioning and ethylene production in etiolated soybean plants.  相似文献   

4.
Aqueous salicylate solutions stimulated ethylene formation only when injurious, or potentially injurious, concentrations were exogenously supplied to soybean cuttings. Stimulation occurred via the biochemical sequence involving ACC as an intermediate, and was attributable to stimulation of ACC synthesis but not of EFE activity. Similar results were obtained by testing wound-induced ethylene, whereas the production of virus-induced ethylene was not affected by salicylate. Prolonged salicylate treatments which did not produce evident injurious effects inhibited soybean growth and rooting, probably through the moderate antiauxinic property attributable to salicylates. These findings are discussed in relation to other results obtained from similar or different plant materials. An erratum to this article is available at .  相似文献   

5.
The similarity of stress ethylene biosynthesis in whole plants to endogenous ethylene biosynthesis was investigated using two inhibitors of ethylene biosynthesis, aminoethoxyvinylglycine (AVG) and cobalt chloride (Co2+); and the intermediates, methionine, S -adenosylmethionine (SAM), and 1-aminocyclopropane-1-carboxylic acid (ACC), of basal ethylene biosynthesis. Stress ethylene production induced by ozone, cadmium, or 2,4-dichlorophenoxyacetic acid was inhibited in hydroponically-grown soybean seedlings in a concentration-dependent manner by both AVG and CO2+. The ethylene intermediates evoked responses in intact seedlings similar to that described for endogenous ethylene production in isolated vegetative tissue. The addition of SAM to the hydroponic system relieved AVG inhibition of stress ethylene production. Feeding ACC to the seedlings resulted in increased ethylene production independent of stress application or prior AVG inhibition. Cobalt inhibition of stress ethylene production was relieved by increasing concentrations of ACC. A short lag period of 12–18 min was observed in stress ethylene production following a 30-min ozone exposure. Addition of cycloheximide partially inhibited ozone-induced ethylene production.
These results suggest a common pathway in whole plants for stress ethylene production and endogenous ethylene biosynthesis.  相似文献   

6.
Uniconazole reduced growth of etiolated mung bean seedlings and increased lateral root formation. Ethylene production for whole seedlings was reduced by 80% within 24 h after treatment and 1-aminocyclopropane-1-carboxylic acid concentrations were reduced by approximately 40% in 12 h. Uniconazole treatment increased spermine levels by 100% by day 4, whereas spermidine and putrescine levels were not affected. Uniconazole, by inhibiting ethylene synthesis, may be increasing spermine levels, which in turn stimulate formation of root primordia.  相似文献   

7.
Phenylacetic acid (PAA) was found to induce ethylene formation in wheat coleoptile segments. In its most effective concentration (0.5 mM) PAA was by approximately 60 % less active than 0.1 mM indole-3-acetic acid (IAA). PAA-induced ethylene formation was stimulated with 0.1 mM L-methionine by 24 % and totally inhibited by 2.5 and 5 μ gml-1 aminoethoxyvinylglycin (AVG) and 10 μg ml-1 cycloheximide. Cyoloheximide in lower concentration (5 μg ml-1) and actinomycin D (10 μg ml-1) inhibited PAA-induced ethylene formation by 50 % and 40 %, respectively. After the simultaneous addition of PAA and IAA ethylene formation was by 35 % lower than in the presence of IAA itself. Further, the coleoptile segments preincubated in IAA and then incubated in PAA solution produced by 35 % less ethylene than those incubated in plain buffer after preincubation in IAA. Quite the opposite effect was found when the segments were preincubated in PAA and then transferred into IAA solution. This treatment resulted in 70 % stimulation of ethylene formation over segments preincubated in PAA and incubated in buffer.  相似文献   

8.
Samimy C 《Plant physiology》1978,61(5):772-774
The apical 1-cm hypocotyl of dark-grown `Clark' soybean (Glycine max [L.] Merr.) seedlings produced ethylene at rates of 7 to 11 nanoliters per hour per gram when attached to the cotyledons. Such physiologically active rates occurred prior to the deceleration of hypocotyl elongation caused by the temperature of 25 C.

Daily exposure of the etiolated seedlings to red light promoted hypocotyl elongation and prevented its lateral swelling. Red light treatment also caused a 45% decrease in ethylene production. Far red irradiation following the red treatment reversed the red effects, suggesting that the ethylene intervenes as a regulator in the phytochrome control of `Clark' soybean hypocotyl growth at 25 C.

  相似文献   

9.
Deep-seeding and ethylene were found to stimulate extension growth of the first internode of intact wheat (Triticum aestivum L.) seedlings in darkness. Seedlings of Hon Mang Mai emerged from much deeper in the soil than the seedlings of the other varieties used and their first internodes elongated to a much greater extent in response to ethylene. Carbon dioxide slowed elongation of the first internode and inhibited ethylene action. Elongation of the first internode due to deep-seeding and ethylene treatment showed high heritabilities, suggesting a genetic basis underlying those traits.  相似文献   

10.
Isoperoxidase B 1 isolated from winter wheat (Triticum aestivum L., cv. Jubilar) seedlings was shown to catalyze ethylene formation from α-keto, γ-methylmercaptobutyric acid (KMBA). In the presence of Mn2+, indole-3-acetic acid (IAA), andp-coumaric acid, the kinetics by isoperoxidase B 1 catalyzed conversion of KMBA into ethylene and other products was similar to that of IAA oxidation. The reaction rate was therefore controlled by IAA through its electrondonating properties. Exogenous IAA induced ethylene formation in the segments of etiolated wheat coleoptiles. IAA-induced ethylene production was enhanced by L-methionine and mitomycin C. Aminoethoxy-analogue of rhizobitoxine, ferulic acid, sodium benzoate, cycloheximide and actinomyoin D exhibited significant inhibitory effects. These data indicate that the overall reaction mechanism in coleoptile segments involves RNA and protein synthesis. The site of IAA action is not specific; 2,4-dichlorophenoxyacetic, α-naphthylacetic and indole-3-butyric acids, respectively, possessed comparable inductive effect as IAA. Indole-3-propionic acid, indole, L-tryptophan and glucobrassicin had only low inductive efficiency, and moreover indole and L-tryptophan slowed down IAA-induced ethylene formation.  相似文献   

11.
Uniconazole (S-3307) induced cadmium tolerance in wheat   总被引:3,自引:0,他引:3  
Uniconazole, a triazole, was applied to seed at a concentration of 0. l g kg–1 seed to protect wheat plants from the toxic metal cadmium (Cd). The degree of protection afforded by uniconazole against Cd toxicity was assessed by measuring fresh and dry weights of shoots and roots and by estimating the chlorophyll and solute leakage level in the leaves. Fresh weights and dry weights of roots and shoots were higher in Cd + uniconazole treated plants compared to uniconazole and cadmium treatment alone. Uniconazole + cadmium treated plants were darker in color, having more chlorophyll. Solute leakage was increased with the increasing concentrations of Cd and loss of membrane permeability was alleviated by the use of uniconazole.  相似文献   

12.
Iron toxicity and stress-induced ethylene production in rice leaves   总被引:9,自引:0,他引:9  
The relationship among iron toxicity, bronzing symptom, and stress-induced ethylene production (SEP) was investigated in detached rice (Oryza sativa L.) leaves during the vegetative-ripening stage and in whole plants during the vegetative stage. When Fe2+ (200 mg L-1) was applied to the detached leaf through a transpiration stream, SEP was higher in the first leaf than in the second and third leaves from the top and maximal around the panicle primordia initiation stage. The genotype difference in SEP was more pronounced in the second and third leaves than in the first leaf. Bronzing intensity increased as SEP increased; iron concentration increase during treatment in the tissue did not correlate with bronzing intensity or with SEP among the 16 genotypes tested. When the roots of an intact plant were exposed to 300 mg L-1 of Fe2+ in culture solution little stress-induced ethylene was produced. By partially or totally derooting the plant, however, stress-induced ethylene was evoked, indicating that roots reduced the Fe2+ uptake so that little stress ethylene is produced in the intact plant. Leaf tissue tolerance for Fe2+ may contribute to genotype differences in iron toxicity tolerance of rice plants when roots are injured during transplanting or exposed to toxic substances in the soil.  相似文献   

13.
14.
Linkage relationships among stress-induced genes in wheat   总被引:3,自引:0,他引:3  
Linkage relationships among genes responding to water-deficit, salt stress, and heat shock were investigated in diploid wheat, Triticum monococcum L. The position of these gene loci relative to closely linked markers and the centromeres is reported. It is proposed to continue to use the present T. monococcum mapping population and the genetic maps based thereon as a framework for future determination of relationships among other genes related to environmental stress in the tribe Triticeae.  相似文献   

15.
Transferrin in insects is known as an iron transporter, an antibiotic agent, a vitellogenin, and a juvenile hormone-regulated protein. We show here a novel functional role for insect transferrin. Stresses, such as iron overload, bacterial or fungal challenge, cold or heat shock, wounding, and H2O2 or paraquat exposure, cause upregulation of the beetle Apriona germari transferrin (AgTf) gene in the fat body and epidermis, and they cause increased AgTf protein levels. RNA interference (RNAi)-mediated AgTf reduction results in rapid induction of apoptotic cell death in the fat body during exposure to heat stress. The observed effect of AgTf RNAi indicates that AgTf inhibits heat stress-induced apoptotic cell death, suggesting a functional role for AgTf in defense and stress responses in the beetle.  相似文献   

16.
小麦-大豆间作中小麦对大豆磷吸收的促进作用   总被引:17,自引:1,他引:17  
李隆  李晓林  张福锁 《生态学报》2000,20(4):629-633
采用塑料膜,20μm尼龙网分司以及不分隔两种俄根系的盆栽装置研究了小麦,大豆间作种间磷吸收的促进作用。结果表明,两种作物根系用尼龙网分隔后,即种间磷竞争作用基本消除后,小麦对大豆磷吸收具有明显的促进和,表现为大豆生物学产量明显提高,是塑料膜分隔的2.5倍,是无分隔4.6倍,尼龙网分隔,大豆分隔,大豆的根系活力高于塑料膜分隔45.2%,达显著水平,此外,尼龙网分隔形成小麦根面,大豆的根系呈偏向小麦根  相似文献   

17.
Sudden death syndrome of soybean (Glycine max) is caused by the soilborne fungus, Fusarium solani f. sp. glycines, that infects soybean roots. Besides root necrosis, symptoms include interveinal leaf chlorosis, necrosis and premature defoliation. It is proposed that a fungal toxin is produced in soybean roots and translocated to foliage. In this study, we isolated compounds from soybean stem exudates from plants that were either inoculated or not inoculated with F. solani f. sp. glycines. A protein with an estimated molecular mass of 17 kDa and designated as FISP 17 for F. solani f. sp. glycines-induced stress protein was identified using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This protein occurred only in F. solani f. sp. glycines-infected soybean stem exudates. The N-terminal amino acid sequence of the purified protein had 100 % identity with a starvation-associated message 22 protein, and 80 and 78 % identity with purified bean pathogenesis-related proteins, PvPR1 and PvPR2, respectively. To determine if the protein was of plant or fungal origin, a synthetic peptide was designed based on the N-terminal sequence and used to raise a polyclonal antibody from rabbit. Western blot analysis showed that the antibody only reacted with a 17-kDa protein in F. solani f. sp. glycines-infected plant exudates, but no reaction occurred with healthy plant exudates or with culture filtrates of F. solani f. sp. glycines. This is the first report of the presence of a stress-induced protein in stem exudates of soybean seedlings root-infected with F. solani f. sp. glycines.  相似文献   

18.
Rhythmicity in ethylene production in cotton seedlings   总被引:4,自引:3,他引:4       下载免费PDF全文
Cotyledons of cotton (Gossypium hirsutum L.) seedlings grown under a photoperiod of 12 hour darkness and 12 hour light showed daily oscillations in ethylene evolution. The rate of ethylene evolution began to increase toward the end of the dark period and reached a maximum rate during the first third of the light period, then it declined and remained low until shortly before the end of the dark period. The oscillations in ethylene evolution occurred in young, mature, and old cotyledons (7 to 21 day old). These oscillations in ethylene evolution seemed to be endogenously controlled since they continued even when the photoperiod was inverted. Moreover, in continuous light the oscillations in ethylene evolution persisted, but with shorter intervals between the maximal points of ethylene evolution. In continuous darkness the oscillations in ethylene evolution disappeared. The conversion of [3,4-14C]methionine into [14C] ethylene followed the oscillations in ethylene evolution in the regular as well as the inverted photoperiod. On the other hand, the conversion of applied 1-aminocyclopropane-1-carboxylic acid into ethylene did not follow the oscillations in ethylene evolution, but was affected directly by the light conditions. Always, light decreased and darkness increased the conversion of applied 1-aminocyclopropane-1-carboxylic acid into ethylene. It is concluded that in the biosynthetic pathway of ethylene the conversion of 1-aminocyclopropane-1-carboxylic acid into ethylene is directly affected by light while an earlier step is controlled by an endogenous rhythm.  相似文献   

19.
The effect of interleukin (IL)-1 on the occurrence of stress-induced gastric erosions was examined in rats. The intracerebroventricular (icv) administration of IL-1 beta significantly inhibited the occurrence of water-immersion restraint stress-induced gastric erosion at doses of 200 ng, 500 ng and 1 microgram, whereas the intravenous (iv) administration of IL-1 beta altered the occurrence of gastric erosion only at a dose of 1 microgram. The inhibitory effect of IL-1 alpha icv administered on the occurrence of gastric erosion was found only at a dose of 1 microgram. The inhibitory effect of IL-1 beta icv administered on the occurrence of stress-induced gastric erosion was not influenced by icv administration of alpha-helical CRF(9-41), a corticotropin-releasing factor (CRF) receptor antagonist. Indomethacin completely blocked the inhibitory action of IL-1 beta icv administered on stress-induced gastric erosion. It is concluded from these results that IL-1 acts mainly in the central nervous system to inhibit the occurrence of stress-induced gastric erosion and that the IL-1 beta-induced inhibition of gastric erosion is mediated by prostaglandin in a manner that is independent of brain CRF.  相似文献   

20.
Contents of ethylene, osmoprotectants, levels and forms of polyamines (PAs) and activities of antioxidant enzymes in the leaves and roots were investigated for five wheat cultivar seedlings (differing in drought tolerance) exposed to osmotic stress (?1.5 MPa). Stress was induced by 2-day-long treatment of plants with polyethylene glycol 6000 (PEG) or NaCl added to hydroponic cultures. Nawra, Parabola and Manu cv. (drought tolerant) showed a marked increase in osmoprotectors (proline and soluble carbohydrates, mainly glucose, saccharose and maltose), free PAs (putrescine Put, spermidine Spd and spermine Spm) and Spd-conjugated levels, in both leaves and roots, after PEG-treatments. Radunia and Raweta (drought sensitive) exhibited smaller changes in the content of these substances. The analysis of enzymes involved in proline metabolism revealed the glutamate as a precursor of proline synthesis in PEG-induced stress conditions. The increase in the activity of antioxidative enzymes, especially catalase and peroxidases, was characteristic for tolerant wheat plants, but for sensitive ones, a decrease in superoxide dismutase and an increase in mainly glutathione reductase activities were observed. After NaCl-treatment smaller changes of all biochemical parameters were registered in comparison with PEG-induced stress. Exceptions were the higher values of ethylene content and a significant increase in saccharose, raffinose and maltose levels (only in stress sensitive plants). The proline synthesis pathway was stimulated from both glutamate and ornithine precursors. These results suggest that the accumulation of inorganic ions in NaCl-stressed plants may be involved in protective mechanisms as an additional osmoregultor. Thus, a weaker stressogenic effect as determined as water deficit by leaf relative water content and relative dry weight increase rate and differences in metabolite synthesis in comparison with PEG stress was observed. Proline seems to be the most important osmo-protector in osmotic stress initiated by both PEG and NaCl. The synthesis of sugars and PAs may be stimulated in a stronger stress conditions (PEG).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号