首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 390 毫秒
1.
基于改进YOLOv5s的自然环境下猕猴桃花朵检测方法   总被引:2,自引:2,他引:0  
为实现对猕猴桃花朵的快速准确检测,该研究提出了一种基于改进YOLOv5s的猕猴桃花朵检测模型YOLOv5s_S_N_CB_CA,并通过对比试验进行了精度验证。在YOLOv5s基础上引入C3HB模块和交叉注意力(criss-cross atte ntion,CCA)模块增强特征提取能力,结合样本切分和加入负样本处理方法进一步提升模型精度。改进模型的检测精确率为85.21%,召回率为90%,模型大小为14.6 MB,交并比(intersection over union,IoU)为0.5下的均值平均精度(mAP0.5)为92.45%,比仅进行样本缩放处理的原始YOLOv5s提高了31.91个百分点,检测速度为35.47帧/s,比原始YOLOv5s提高了34.15%。使用改进模型对自然环境下不同天气、晴天不同时段光照强度下的猕猴桃花朵进行检测,结果表明模型检测晴天、阴天下猕猴桃花朵的mAP0.5分别为91.96%、91.15%,比原始YOLOv5s分别高出2.55、2.25个百分点;检测晴天9:00-11:00、15:00-17:00光强下猕猴桃花...  相似文献   

2.
为解决农田复杂作业环境下拖拉机驾驶员因光照、背景及遮挡造成的关键点漏检、误检等难识别问题,该研究提出了一种基于改进YOLO-Pose的复杂环境下驾驶员关键点检测方法。首先,在主干网络的顶层C3模块中嵌入Swin Transformer编码器,提高遮挡状况下关键点的检测效率。其次,采用高效层聚合网络RepGFPN作为颈部网络,通过融合高层语义信息和低层空间信息,增强多尺度检测能力,同时在颈部网络采用金字塔卷积替换标准3×3卷积,在减少模型参数量的同时有效地捕获不同层级的特征信息。最后,嵌入坐标注意力机制优化关键点解耦头,增强预测过程对关键点空间位置的敏感程度。试验结果表明,改进后算法mAP0.5(目标关键点相似度Loks阈值取0.5时平均精度均值)为89.59%,mAP0.5:0.95(目标关键点相似度Loks阈值取0.5,0.55,···,0.95时的平均精度均值)为62.58%,相比于基线模型分别提高了4.24和4.15个百分点,单张图像平均检测时间为21.9 ms,与当前主流关键点检测网络Hou...  相似文献   

3.
随着海参养殖业快速发展,利用水下机器人代替人工作业的海参智能捕捞已成为发展趋势。浅海环境复杂,海参体色与环境区分性差、海参呈现半遮蔽状态等原因,导致目标识别准确率低下。此外由于景深运动,远端海参作为小目标常常未被识别成功。为解决上述问题,该研究提出一种基于改进SSD网络的海参目标检测算法。首先通过RFB(Receptive Field Block)模块扩大浅层特征感受野,利用膨胀卷积对特征图进行下采样,增加海参细节、位置等信息,并结合注意力机制,对不同深度特征进行强化,将计算得出的权重与原特征信息相乘以此获得特征图,使结果包含最具代表性的特征,也抑制无关特征。最后实现特征图融合,进一步提升水下海参的识别精度。以实际拍摄的视频进行测试验证,在网络结构层面上,对传统算法进行改进。试验结果表明,基于改进的SSD网络的海参目标检测算法的平均精度均值为95.63%,检测帧速为10.70帧/s,相较于传统的SSD算法,在平均精度均值提高3.85个百分点的同时检测帧速仅减少2.8帧/s。与Faster R-CNN算法和YOLOv4算法进行对比试验,该研究算法在平均精度均值指标上,分别比YOLOv4、Faster R-CNN算法提高4.19个百分点、1.74个百分点。在检测速度方面,该研究算法较YOLOv4、Faster R-CNN算法分别低4.6帧/s、高3.95帧/s,试验结果表明,综合考虑准确率与运行速度,改进后的SSD算法较适合进行海参智能捕捞任务。研究结果为海参智能捕捞提供参考。  相似文献   

4.
为解决自然环境中番茄叶片病虫害检测场景复杂、检测精度较低,计算复杂度高等问题,提出一种SLP-YOLOv7-tiny的深度学习算法。首先,将主干特征提取网络中部分3×3的卷积Conv2D(2D convolution)改为分布偏移卷积DSConv2D(2D Depthwise Separable Convolution),以减少网络的计算量,并且使计算速度更快,占用内存更少;其次,将无参数注意力机制(parameter-free attention module, SimAM)融合到骨干特征提取网络中,加强模型对病虫害特征的有效提取能力和特征整合能力;最后,将原始YOLOv7-tiny的CIOU损失函数,更替为Focal-EIOU损失函数,加快模型收敛并降低损失值。试验结果表明,SLP-YOLOv7-tiny模型整体识别精准度、召回率、平均精度均值mAP0.5(IOU阈值为0.5时的平均精度)、mAP0.5~0.95(IOU阈值从0.5到0.95之间的所有值进行平均计算的平均精度)分别为95.9%、94.6%、98.0%、91.4%,与改进前YOLOv7-tiny相比,分别提升14.7、29.2、20.2、30个百分点,同时,计算量降低了62.6%,检测速度提升了13.2%。与YOLOv5n、YOLOv5s、YOLOv5m、YOLOv7、YOLOv7-tiny、Faster-RCNN、SSD目标检测模型相比,mAP0.5分别提升了2.0、1.6、2.0、2.2、20.2、6.1和5.3个百分点,而计算量大小仅为YOLOv5s、YOLOv5m、YOLOv7、Faster-RCNN、SSD的31.5%、10.6%、4.9%、4.3%、3.8%。结果表明SLP-YOLOv7-tiny可以准确快速地实现番茄叶片病虫害的检测,且模型较小,可为番茄叶片病虫害的快速精准检测的发展提供一定的技术支持。  相似文献   

5.
基于改进YOLOv5s的名优绿茶品质检测   总被引:1,自引:1,他引:0  
针对实际检测过程中茶叶数量多、体积小、茶叶之间颜色和纹理相似等特点,该研究提出了一种基于YOLOv5s的名优绿茶品质检测算法。首先,该算法在骨干网络层引入膨胀卷积网络,通过增大感受野的方式增强茶叶微小特征的提取。其次,改进特征融合进程,基于通道注意力和空间注意力抑制无关信息的干扰,构建CBAM注意力机制优化检测器。接着根据Swin transformer网络结构在多个维度对小尺度茶叶的特征进行交互和融合。最后,配合SimOTA匹配算法动态分配茶叶正样本,提高不同品质茶叶的识别能力。结果表明,改进后的算法精准度、召回率、平均精度均值、模型体积、检测速度分别为97.4%、89.7%、91.9%、7.11MB和51帧/s,相较于基础的YOLOv5s平均精度均值提高了3.8个百分点,检测速度提高了7帧/s。利用相同数据集在不同目标检测模型上进行对比试验,与Faster-RCNN、SSD、YOLOv3、YOLOv4等模型相比,平均精度均值分别提升10.8、22.9、18.6、8.4个百分点,进一步验证了该研究方法的有效性和可靠性。  相似文献   

6.
基于改进YOLOv5s和迁移学习的苹果果实病害识别方法   总被引:8,自引:8,他引:0  
为实现对苹果果实病害的快速准确识别,提出了一种基于改进YOLOv5s的果实病害识别模型:GHTR2-YOLOv5s (YOLOv5s with Ghost structure and TR2 module),并通过迁移学习策略对其进行优化。在YOLOv5s基础上通过加入幻影结构和调整特征图整体宽度得到小型基线模型,通过卷积块注意力模块(Convolutional Block Attention Module, CBAM)和加权双向特征金字塔网络(Bidirectional Feature Pyramid Network, BIFPN)提高模型精度,使用TR2(Two Transformer)作为检测头增强模型对全局信息的获取能力。改进后模型大小和识别速度为2.06 MB和0.065 s/张,分别为YOLOv5s模型的1/6和2.5倍;IoU阈值为0.5下的平均精度均值(mAP0.5)达到0.909,能快速准确地识别苹果果实病害。研究通过在线图像增强与迁移学习相结合的方式提高模型收敛速度,进一步提高模型精度,其mAP0.5达到0.916,较原始模型提升8.5%。试验结果表明,该研究提出的基于GHTR2-YOLOv5s和迁移学习的苹果病害识别方法有效优化了模型训练过程,实现了占用较少计算资源的情况下对苹果病害进行快速准确地识别。  相似文献   

7.
为解决自然环境中苹果叶片病害检测场景复杂、小目标病害检测难度高以及模型参数大无法在移动端和嵌入式设备部署等问题,提出一种基于YOLOv5s的苹果叶片小目标病害轻量化检测方法。该方法将YOLOv5s的骨干网络更改为ShuffleNet v2轻量化网络,引入CBAM(convolutional block attention module)注意力模块使模型关注苹果叶片小目标病害,添加改进RFB-s(receptive field block-s)支路获取多尺度特征,提高苹果叶片病害检测精度,并更改边界框回归损失函数为SIoU(scylla-intersection over union),增强病斑定位能力。试验表明改进后的YOLOv5s模型在IoU大于0.5时的平均精度均值(mean average precision,mAP0.5)和每秒传输帧数(frame per second,FPS)分别达到90.6%和175帧/s,对小目标的平均检测准确率为38.2%,与基准模型YOLOv5s相比,其mAP0.5提升了0.8个百分点,参数量减少了6.17 MB,计算量减少了13.8 G,对小目标的检测准确率提高了3个百分点。改进后的YOLOv5s目标检测模型与Faster R-CNN、SSD、YOLOv5m、YOLOv7、YOLOv8和YOLOv5s目标检测模型相比,具有最小的参数量和计算量,对小目标病害叶斑病和锈病的检测准确率分别提高了1.4、4.1、0.5、5.7、3.5、3.9和1.5、4.3、1.2、2.1、4、2.6个百分点,该方法为真实自然环境下苹果叶片病害尤其是小目标病害的轻量化检测提供参考依据。  相似文献   

8.
为解决光线遮蔽、藻萍干扰以及稻叶尖形状相似等复杂环境导致稻田杂草识别效果不理想问题,该研究提出一种基于组合深度学习的杂草识别方法。引入MSRCP(Multi-Scale Retinex with Color Preservation)对图像进行增强,以提高图像亮度及对比度;加入ViT分类网络去除干扰背景,以提高模型在复杂环境下对小目标杂草的识别性能。在YOLOv7模型中主干特征提取网络替换为GhostNet网络,并引入CA注意力机制,以增强主干特征提取网络对杂草特征提取能力及简化模型参数计算量。消融试验表明:改进后的YOLOv7模型平均精度均值为88.2 %,较原YOLOv7模型提高了3.3个百分点,参数量减少10.43 M,计算量减少66.54×109次/s,有效提高模型速度与精度。识别前先经过MSRCP图像增强后,改进YOLOv7模型的平均精度均值提高了2.6个百分点,模型对光线遮蔽、藻萍干扰以及稻叶尖形状相似的复杂环境下平均精度均值分别提高5.3、3.6、3.1个百分点;再加入ViT分类网络后,模型平均精度均值进一步提高,较原模型平均精度均值整体提升了4.4个百分点,在复杂环境下的平均精度均值较原模型整体提升了6.2、6.1、5.7个百分点。ViT-改进YOLOv7模型的平均精度均值为92.6 %,相比于YOLOv5s、YOLOXs、MobilenetV3-YOLOv7、YOLOv8和改进YOLOv7分别提高了11.6、10.1、5.0、4.2、4.4个百分点。研究结果可为稻田复杂环境的杂草精准识别提供支撑。  相似文献   

9.
基于半监督SPM-YOLOv5的套袋柑橘检测算法   总被引:2,自引:2,他引:0  
为解决柑橘经过套袋后其形状从圆形变为条状且纹理细节急剧减低,导致当前目标检测算法对套袋柑橘检测难度增大,同时目标检测算法性能依赖于有标记样本数量的问题。该研究设计了一种基于教师学生模型的SPM(Strip Pooling Module)-YOLOv5算法,在YOLOv5的骨干网络中加入条带注意力模块使模型更加关注条状的套袋柑橘与树枝,同时教师学生模型为半监督方法,使目标检测算法可利用无标记样本提升模型的性能,降低对有标记样本的依赖。试验结果表明,该文算法在套袋柑橘与树枝检测的平均精度均值分别为77.4%与53.5%,相比YOLOv5分别提升了7.5个百分点与7.6个百分点,套袋柑橘检测的精度与召回率达到94%与76.2%。因此,基于教师学生模型的SPM-YOLOv5算法精度高、速度快,能有效用于套袋柑橘检测。  相似文献   

10.
为解决莲田环境下不同成熟期莲蓬的视觉感知问题,该研究提出了一种改进YOLOv5s的莲蓬成熟期检测方法。首先,通过在主干特征网络中引入BoT(bottleneck transformer)自注意力机制模块,构建融合整体与局部混合特征的映射结构,增强不同成熟期莲蓬的区分度;其次,采用高效交并比损失函数EIoU(efficient IoU)提高了边界框回归定位精度,提升模型的检测精度;再者,采用K-means++聚类算法优化初始锚框尺寸的计算方法,提高网络的收敛速度。试验结果表明,改进后YOLOv5s模型在测试集下的精确率P、召回率R、平均精度均值mAP分别为98.95%、97.00%、98.30%,平均检测时间为6.4ms,模型尺寸为13.4M。与YOLOv3、 YOLOv3-tiny、 YOLOv4-tiny、 YOLOv5s、YOLOv7检测模型对比,平均精度均值mAP分别提升0.2、1.8、1.5、0.5、0.9个百分点。基于建立的模型,该研究搭建了莲蓬成熟期视觉检测试验平台,将改进YOLOv5s模型部署在移动控制器Raspberry Pi 4B中,对4种距离范围下获取的莲蓬场景图像...  相似文献   

11.
疏果期苹果目标检测是实现疏果机械化、自动化需要解决的关键问题。为实现疏果期苹果目标准确检测,该研究以YOLOv7为基础网络,融合窗口多头自注意力机制(Swin Transformer Block),设计了一种适用于近景色小目标检测的深度学习网络。首先在YOLOv7模型的小目标检测层中添加Swin Transformer Block,保留更多小尺度目标特征信息,将预测框与真实框方向之间的差异考虑到模型训练中,提高模型检测精度,将YOLOv7中的损失函数CIoU替换为SIoU。最后利用Grad-CAM方法产生目标检测热力图,进行有效特征可视化,理解模型关注区域。经测试,该文模型的检测均值平均精度为95.2%,检测准确率为92.7%,召回率为91.0%,模型所占内存为81 MB,与原始模型相比,均值平均精度、准确率、召回率分别提高了2.3、0.9、1.3个百分点。该文模型对疏果期苹果具有更好的检测效果和鲁棒性,可为苹果幼果生长监测、机械疏果等研究提供技术支持。  相似文献   

12.
无人机补播是草地修复工作的有效手段之一。针对无人机作业过程中,空斑定位精度不高导致的效率低下、工作量大等问题,该研究提出一种基于无人机图像超分辨率重建和Transformer的退化草地空斑定位方法YOLOFG(YOLO for Gap)。基于YOLOv5s网络框架,在模型颈部设计联级特征纹理选择模块,强化模型特征纹理细节聚焦力,解决无人机空斑影像尺度变化大、纹理模糊问题;其次,以ShuffleNetV2构建主干网络,嵌入信息交互Transformer自注意力结构,提取像素间更多差异化特征,以提升模型对空斑边缘像素的精确捕获能力;最后,基于空斑锚框信息建立无人机位姿信息和空间平面的成像模型,实现目标空斑的精准定位。试验结果表明,YOLOFG模型平均精度均值为96.57%,相较于原始YOLOv5s模型提升3.84个百分点;参数量约为6.24 MB,比原始模型降低约11.2%。与YOLOv4、YOLOv7、YOLOv8模型相比,检测精度分别提高11.86、9.65、6.82个百分点。空斑定位的平均误差为0.4404 m,满足无人机作业对草地空斑精准定位的需求,可为开展退化草地植被恢复与重建工作提供有力技术支持。  相似文献   

13.
采用改进YOLOv3算法检测青皮核桃   总被引:2,自引:2,他引:0  
使用机器视觉对果实检测并进行估产是实现果园智能化管理的重要途径,针对自然环境下青皮核桃与叶片颜色差异小、核桃体积较小导致青皮核桃不易检出的问题,提出一种基于改进YOLOv3的青皮核桃视觉检测方法。依据数据集特征进行数据增强,引入Mixup数据增强方法,该研究使模型从更深的维度学习核桃特征;针对核桃单种类目标检测比较不同预训练模型,选择精度提升更明显的Microsoft Common Objects in Context(COCO)数据集预训练模型;依据标注框尺寸统计对锚框进行调整,避免锚框集中,提升模型多尺度优势。在消融试验中,前期改进将平均精度均值提升至93.30%,在此基础上,引入MobilNet-v3骨干网络替换YOLOv3算法中原始骨干网络,提升模型检测能力及轻量化。试验表明,基于改进YOLOv3的青皮核桃检测平均精度均值为94.52%,超越YOLOv3其他2个骨干网络和Faster RCNN-ResNet-50网络。本文改进模型大小为88.6 M,检测速度为31帧/s,检测速度是Faster RCNN-ResNet-50网络的3倍,可以满足青皮核桃实时准确检测需求。该方法可为核桃果园智能化管理中的估产、采收规划等提供技术支撑,也可为近背景颜色的小果实实时准确检测提供思路。  相似文献   

14.
针对YOLOv5(you only look once version five)模型在农作物害虫密集目标上的检测效果无法满足实际需求,以及训练过程中模型收敛速度较慢等问题,该研究提出了融入全局响应归一化(global response normalization,GRN)注意力机制的YOLOv5农作物害虫识别模型(YOLOv5-GRNS)。设计了融入GRN注意力机制的编码器(convolution three,C3)模块,提高对密集目标的识别精度;利用形状交并比(shape intersection over union,SIoU)损失函数提高模型收敛速度和识别精度;在公开数据集IP102(insect pests 102)的基础上,筛选出危害陕西省主要农作物的8种害虫类型,构建了新数据集IP8-CW(insect pests eight for corn and wheat)。改进后的模型在新IP8-CW和完整的IP102两种数据集上进行了全面验证。对于IP8-CW,全类别平均准确率(mean average precision,mAP)mAP@.5和mAP@.5:.95分别达到了72.3%和47.0%。该研究还对YOLOv5-GRNS模型进行了类激活图分析,不仅从识别精度,而且从可解释性的角度,验证了对农作物害虫、尤其是密集目标的优秀识别效果。此外,模型还兼具参数量少、运算量低的优势,具有良好的嵌入式设备应用前景。  相似文献   

15.
为了解决因梭梭和红柳等宿主遮挡、样本分布密集、样本大小不均衡等造成人工种植肉苁蓉检测精度低以及模型参数量过大难以向嵌入式设备移植等问题,该研究提出一种基于改进YOLOv5s的人工种植肉苁蓉轻量化检测方法。首先,将YOLOv5s的主干网络替换为EfficientNetv2网络,以减少模型参数量和计算复杂度进而实现模型轻量化,便于后期将模型向嵌入式设备部署;其次,为了增强模型对小目标肉苁蓉特征信息的提取能力,将C3模块与Swin Transformer Block进行整合,得到C3STR模块,将其引入主干网络,并将其输出的特征图与Neck网络中的特征图进行融合;最后,在检测头前端与颈项加强网络之间添加CA注意力机制,以弱化背景信息、聚焦目标特征,提高网络检测性能。试验结果表明,该模型对于肉苁蓉的检测精度和准确率分别为89.8%和92.3%,模型的参数量和计算量分别为5.69×106 MB和6.8 GB,权重文件大小为11.9 MB,单幅图像推理时间为8.9 ms,能够实现实时性检测。同其他主流模型相比,改进后的模型的检测精度分别比SSD、Faster R-CNN、YO...  相似文献   

16.
针对目前在水下复杂环境中池塘养殖河蟹与饵料的检测算法存在检测精度低、速度慢等问题,该研究提出了基于改进YOLOv5s(you only look once version 5 small)的河蟹与饵料检测方法。首先,采用轻量化卷积Ghost替换普通卷积,同时利用GhostBottleneck结构替换原主干网络中的残差结构快速提取网络特征,减少模型计算量,满足安卓端的应用要求。其次,为了弥补因网络参数量减少造成网络检测精度稍有降低的问题,借鉴BiFPN(bidirectional feature pyramid network)的思想改进原始YOLOv5s的双向融合骨干网络,以较低的计算成本提高网络对小目标的检测精度。此外,为了帮助网络进一步更好地识别目标,加入了CA(coordinate attention)注意力机制,使得图像中感兴趣的区域能够更准确地被捕获。试验结果表明:该研究改进模型平均精度均值为96.9%,计算量为8.5GFLOPs,与当前主流的单阶段有锚框目标检测算法SSD(single shot multibox detector)和YOLOv3相比,具有更高的检测精度以及更少的计算量。相比于原始YOLOv5s模型,本文改进模型平均精度均值提高了2.2个百分点,计算量和模型内存都降低了40%以上。最后,将改进前后的模型部署到安卓设备上测试。测试结果表明:改进后模型的平均检测速度为148ms/帧,相较于原始模型检测速度提高了20.9%,并且保持了较好的检测效果,平衡了安卓设备对模型检测精度以及速度的性能需求,能够为河蟹养殖投饵量的精准确定提供参考。  相似文献   

17.
利用目标检测获取水下鱼类图像中的生物信息,对于实现水产养殖信息化、智能化有重要意义。受到成像设备与水下拍摄环境等因素的影响,重叠鱼群尾数检测仍为水下目标检测领域的难点之一。该研究以水下重叠鱼群图像为研究对象,提出了一种基于图像增强与改进Faster-RCNN网络的重叠鱼群尾数检测模型。在图像预处理部分,该研究利用MSRCR算法结合自适应中值滤波算法进行水下图像增强;在Faster-RCNN网络的改进部分,该研究采用ResNeXt101网络作为模型主干网络、增加带有CBAM(Convolution Block Attention Module)注意力机制的Bi-PANet(Bilinear-Path Aggregation Network)路径聚合网络、使用PAM(Partitioning Around Medoids)聚类算法优化网络初始预测框的尺度和数量、以Soft-NMS(Soft Non-Maximum Suppression)算法替代NMS(Non-Maximum Suppression)算法。通过以上措施提高模型对于重叠鱼群尾数的检测精度。通过消融试验可得,改进后的模型对水下重叠鱼群图像的平均检测精度和平均召回率分别为76.8%和85.4%,两项指标较Faster-RCNN模型分别提高了8.4个百分点和13.2个百分点。通过对多种模型的实际试验结果进行对比可知,改进后的模型的平均准确率相较于YOLOv3-spp、SSD300和YOLOv5x6分别高出32.9个百分点、12.3个百分点和6.7个百分点。改进后的模型对重叠数量为2~5尾的鱼群进行数量检测时,成功率分别为80.4%、75.6%、65.1%和55.6%,明显高于其他目标检测算法,可为重叠鱼群尾数检测提供参考。  相似文献   

18.
为实现花椒簇的快速准确检测,该研究提出了一种基于改进YOLOv5s的花椒簇检测模型。首先,使用MBConv(MobileNetV3 block convolution,MBConv)模块和基于ReLU的轻量级自注意力机制优化了EfficientViT网络,用其代替YOLOv5s的主干,减少模型的参数量、增强模型对重要特征的表达能力。其次,在模型的训练过程中采用了OTA(optimal transport assignment)标签分配策略,优化训练中的标签分配结果。最后,使用WIoU损失函数对原损失函数CIoU进行替换,提高锚框的质量。试验结果表明,改进YOLOv5s模型的平均准确度均值(mean average precision,mAP)为97.3%、参数量为5.9 M、检测速度为131.6帧/s。相较于YOLOv5s模型,mAP提升1.9个百分点、参数量降低15.7%、检测速度提高14.5%。结果表明,该研究提出的改进YOLOv5s模型准确度高、参数量低、检测速度快,可实现对花椒簇的有效检测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号