首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both the generation of a microporous structure and char formation kinetics have been studied in the pyrolysis of sawdust of Pinus insignis in a conical spouted bed reactor, in the range 350–700 °C. The BET surface area (representative of the physical evolution of the solid) and the C/H ratio of the solid (representative of the chemical structural change) have been taken as conversion indices. From the measurement of the C/H ratio of the solid (the more significant variable), it has been determined that the reaction order is 0.5 and that the kinetic constant is between 0.18 min−1 at 350 °C and 1.26 min−1 at 700 °C. However the value of the constant is almost independent of temperature, at 1 min−1 in the range 500–700 °C. © 2000 Society of Chemical Industry  相似文献   

2.
The pyrolysis of poly-(methyl methacrylate) (PMMA) has been studied in a pyrolysis plant provided with a conical spouted bed reactor. This reactor is an interesting technology for the pyrolysis of waste plastics due to its excellent hydrodynamic behaviour and its high heat transfer and versatility. A previous kinetic study was carried out in thermobalance, in which the degradation of this polymer was observed to begin at low temperatures, 553 K. Consequently, the activation energy is low compared to other plastics. The influence of temperature on pyrolysis product distribution in the conical spouted bed reactor has been studied in the 673–823 K range. The products obtained at low temperatures are mainly the monomers of the polymer used for the study methyl methacrylate (MMA) and ethyl acrylate (EA). When the pyrolysis temperature is increased, the yield of monomers is lower due to the higher severity of secondary reactions, and there is a significant increase in the yield of gases. The maximum monomer recovery has been obtained at 673 K, with the yields of MMA and EA being 86.5% and 6.2%, respectively.  相似文献   

3.
A model has been developed for pyrolysis of polyethylene terephthalate (PET) in a spouted bed reactor based on the conservation equations for heat, mass, and momentum transports. A spouted bed has been constructed and the kinetic parameters have been obtained within the temperature range of 723–833 K, using two particle size ranges, (0.1–1.0) × 10?3 and (1.0–3.0) × 10?3 m. The model' predictions for the radial distributions of temperature and concentration confirm the excellent mixing of particles. Thus, spouted beds are appropriate equipments for performing kinetic studies of PET pyrolysis. The inlet gas temperature and the mass of PET highly affect PET conversion. The amount of inert particles has a negligible effect on the conversion and it can be reduced as far as a stable spouting is preserved. The gas flow suffices to eliminate the external heat and mass‐transfer limitations. It can be reduced to the minimum value to decrease the energy consumption. © 2015 American Institute of Chemical Engineers AIChE J, 61: 1900–1911, 2015  相似文献   

4.
Fast pyrolysis experiments of larch sawdust were conducted in a conical spouted‐bed reactor to study the influences of reaction temperature, inlet gas velocity, feeding rate, and particle size on the product yield and pyrolysis oil quality. For the first time, the optimal conditions were determined for various pyrolysis operations of such reactor to increase the yield and quality of pyrolysis oil. The results demonstrate that the biomass particle size, reaction temperature, biomass feeding rate, and inlet gas velocity all affected the quality and yield of the pyrolysis oil, in this order.  相似文献   

5.
This paper describes the hydrodynamic and heat transfer performance of a pilot-plant scale conical spouted bed reactor designed for the pyrolysis of biomass wastes. The spouted bed reactor is the core of a fast pyrolysis pilot plant with continuous biomass feed of up to 25 kg/h, located at the Ikerlan-IK4 facilities.The aim of this paper is to obtain a deeper understanding of the spouted bed reactor performance at pyrolysis temperatures, in order to operate under stable conditions, improve the heat transfer rate in the reactor and minimize energy requirements. The influence of temperature on conical spouted bed hydrodynamics has been studied and wall-to-bed and bed-to-surface heat transfer coefficients have been determined.  相似文献   

6.
Continuous pyrolysis of scrap tyres has been carried out in a conical spouted bed reactor and the results (yields, composition of the volatile fraction and carbon black properties) have been compared with those obtained operating in batch mode in a previous study. Continuous operation in the 425-600 °C range gives way to a yield of 1.8-6.8 wt.% of gases, 44.5-55.0 wt.% of liquid fraction (C5-C10 range hydrocarbons, with a maximum yield of limonene of 19.3 wt.% at 425 °C), 9.2-11.5 wt.% of tar and 33.9-35.8 wt.% of char. The main differences between the continuous and batch processes are in the yield of light aromatics, which is higher in the continuous process, and in that of the heavy liquid fraction or tar, which is higher in the batch process. These are the advantages of the continuous process, although hydrogenation of the liquid fraction is required even in this case in order to use it as fuel. The high yield of limonene, the flexibility in the operating conditions and the capacity for a continuous removal of the residual carbon black from the reactor are the advantages of conical spouted bed technology. The excellent performance of the conical spouted bed reactor for the tyre pyrolysis process is due to the solid cyclic movement, the good contact between phases, the high heating rate and the reduced residence time of the volatile products.  相似文献   

7.
Pyrolysis with partial combustion of oil shale fines from the Irati Formation in Brazil has been investigated in a 30 cm diameter spouted bed reactor. Experiments were carried out at atmospheric pressure and temperatures between 450 and 600°C. The oi] shale particle size was less than 6.35 mm. Spouting gas temperatures ranged from 20 to 565°C. Three inlet gas pipe diameters and two spouted bed heights were studied. Operation of the process was found to be stable over a wide range of test conditions. Results are presented for oil and gas quality, efficiency of retorting and overall performance of the plant.  相似文献   

8.
The pyrolysis has risen as an important alternative technology for generating value from waste. Among the modern solid wastes, the post-consumer carton packaging highlights due to the high value-added of the primary products obtained from pyrolysis. In an attempt to use conical spouted beds (CSBs) as a pyrolysis reactor for processing cartons, this present research aims at analyzing experimentally the air–carton mixtures flow dynamics in CSBs and stating comparisons with characteristic fluid dynamics obtained by using CFD technique. The flow behavior of air–carton disk is experimentally investigated by analyzing data of bed pressure drop, air velocity and fountain height. For the carton disk and polyethylene mixtures up to 50% cartons (in mass), and carton disks and sand mixtures comprising 5 and 10% cartons (in mass), the analysis of the experimental data shows that the stable spouted regimes are achieved. Furthermore, the simulated results demonstrate that the Eulerian approach using the Syamlal drag model is able to predict qualitatively the flow behavior in conical spouted beds comprising non-spherical particle mixtures.  相似文献   

9.
The composition of the pyrolysis products of plastics depends on disintegration of the macromolecule into variety of hydrocarbon fractions. In this work, a detailed gas chromatographic study of pyrolysis products of polypropylene (PP) between 200 and 600°C was carried out. The pyrograms have been analyzed in terms of amount of different products evolved at various pyrolysis temperatures. At low pyrolysis temperatures (200–300°C), the yield of lighter hydrocarbons (C5‐C10) is low; it gradually increases until maximum decomposition temperature (446°C) and decreases thereafter. The following reaction types were considered to explain the decomposition mechanism of PP: (a) main chain cleavage to form chain‐ terminus radicals; (b) intramolecular hydrogen transfer to generate internal radicals; (c) intermolecular hydrogen transfer to form both volatile products and radicals; and (d) β‐scission to form both volatiles and terminally unsaturated polymer chains. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Catalytic fast pyrolysis of cellulose was studied at 500°C using a ZSM‐5 catalyst in a bubbling fluidized bed reactor constructed from a 4.92‐cm ID pipe. Inert gas was fed from below through the distributor plate and from above through a vertical feed tube along with cellulose. Flowing 34% of the total fluidization gas through the feed tube led to the optimal mixing of the pyrolysis vapors into the catalyst bed, which experimentally corresponded to 29.5% carbon aromatic yield. Aromatic yield reached a maximum of 31.6% carbon with increasing gas residence time by changing the catalyst bed height. Increasing the hole‐spacing in the distributor plate was shown to have negligible effect on average bubble diameter and hence did not change the product distribution. Aromatic yields of up to 39.5% carbon were obtained when all studied parameters were optimized. © 2014 American Institute of Chemical Engineers AIChE J, 60: 1320–1335, 2014  相似文献   

11.
A novel biomass, autothermal, fast pyrolysis reactor with a draft tube and an internal dipleg dividing the reactor into two interconnected beds is proposed. This internally interconnected fluidized beds (IIFB) reactor is designed to produce high‐quality bio‐oil using catalysts. Meanwhile, the pyrolysis by‐products, i.e., char, coke and non‐condensable gases, are expected to burn in the combustion bed to provide the heat for the pyrolysis. On the other hand, the catalysts can be regenerated simultaneously. In this study, experiments on the hydrodynamics of a cold model IIFB reactor are reported. Geldart group B and D sand particles were used as the bed materials. The effects of spouting and fluidizing gas velocities, particle size, static bed height and the total pressure loss coefficient of the pyrolysis bed exit, on the flow patterns and pressure drops of the two interconnected beds are studied. Six distinct flow patterns, i.e., fixed bed (F), periodic spouted/bubbling bed (PS/B), spouted bed with aeration (SA), spout‐fluidized bed (SF), spout‐fluidized bed with slugging (SFS) and spouted bed with backward jet (SBJ) are identified. The investigations on the pressure drops of the two beds show that both of them are seen to increase at first (mainly in the F flow pattern), then to decrease (mainly in the PS/B and SA flow patterns) and finally to increase again (mainly in the SA and SF flow patterns), with the increase of the spouting gas velocity. It is observed that a larger particle size and lower static bed height lead to lower pressure drops of the two beds.  相似文献   

12.
Biomass pyrolysis process from a drop tube reactor was modelled in a plug flow reactor using Aspen Plus process simulation software. A kinetic mechanism for pyrolysis was developed considering the recent improvements and updated kinetic schemes to account for different content of cellulose, hemicellulose, and lignin. In this regard, oak, beechwood, rice straw, and cassava stalk biomasses were analyzed. The main phenomena governing the pyrolysis process are identified in terms of the characteristic times. Pyrolysis process was found to be reaction rate controlled. Effects of pyrolysis temperature on bio-oil, gases, and char yields were evaluated. At optimum pyrolysis conditions (i.e., 500°C), a bio-oil yield of 67.3, 64, 43, and 52 wt.% were obtained from oak, beechwood, rice straw, and cassava stalk, respectively. Oak and beechwood were found to give high yields of bio-oil, while rice straw produced high gas and char yields compared to other biomasses. Although temperature is the main factor that plays a key role in the distribution of pyrolysis products, the composition of cellulose, hemicellulose, and lignin in the feedstock also determines the yield behaviour and composition of products. With the rise in pyrolysis temperature, further decomposition of intermediate components was initiated favouring the formation of lighter fractions. Comparably, species belonging to the aldehyde chemical family had the highest share of bio-oil components in all the investigated feedstocks. Overall, the present study shows a good agreement with the experimental study reported in the literature, confirming its validity as a predictive tool for the biomass pyrolysis process.  相似文献   

13.
To maximize oil yields in the fast pyrolysis of biomass it is generally accepted that vapors need to be rapidly quenched. The influence of the heterogeneous and homogeneous vapor‐phase reactions on yields and oil composition were studied using a fluidized‐bed reactor. Even high concentrations of mineral low char (till 55 vol %) appeared not to be catalytically active. However, the presence of minerals, either in biomass or added, does influence the yields, especially by the occurrence of vapor‐phase charring/polymerization reactions. Contradictory, in the absence of minerals, homogeneous vapor‐phase cracking reactions were dominant over polymerization/charring reactions (400–550°C, 1–15 s). With increasing vapor residence time, the oil yield reached an asymptotic value, which decreased with temperature. At a vapor temperature of 400°C no decrease in oil yield was observed, but dedicated analysis showed that homogeneous vapor to vapor reactions had occurred. © 2011 American Institute of Chemical Engineers AIChE J, 2012  相似文献   

14.
Thermal degradation of polycyclopentadiene polymer (PCPD) was investigated by pyrolysis gas chromatography (PGC) in the temperature range of 500–950°C. The nature and composition of the pyrolyzates at various temperatures are presented, and the mechanism of degradation is explained. The activation energy of decomposition (Ea) was obtained from an Arrhenius‐type plot using the concentration of the product ethylene (C2) at different pyrolysis temperatures and the value was found to be 138 kJ mol−1. Thermo‐oxidative degradation of PCPD in the presence of ammonium perchlorate (AP), the most commonly used oxidizer for polymeric fuel binders, was studied at a pyrolysis temperature of 700°C. The compositions of the products with varying amounts of AP are given, and the exothermicity of oxidative decomposition reactions is evaluated. The energetics of the degradation processes are compared with those of polybutadiene type polymers. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 635–641, 2000  相似文献   

15.
The objectives of this study were to examine how to recycle cup waste efficiently and effectively and to determine if cup waste can be converted into liquid, solid, and gas value-added products by slow pyrolysis. The characteristics and potential utilizations of the pyrolysis products were investigated. The study included the effects of temperature, heating rate, and different feedstocks. The yield of pyrolysis oil derived from cup waste increased from 42% at 400°C to 47% at 600°C, while the yield of char decreased from 26% at 400°C to approximately 20% at 600°C. Acetic acid and levoglucosan were identified as the main components of the pyrolysis oil. The char obtained at 500°C was physically activated at 900°C for 3 h with CO2. The adsorption capacity of the activated char was investigated with model compounds, such as methyl orange, methylene blue, ibuprofen, and acetaminophen. The results showed that the adsorption capacity of the activated char was similar to that of commercial activated carbon produced from peat. The higher heating value of the produced gas stream calculated at 400°C was 19.59 MJ/Nm3. Also, conventional slow pyrolysis (CSP) and microwave-assisted pyrolysis (MAP) technologies were compared to determine the differences in terms of products yields, composition and characteristics of the pyrolysis oil, and their potential applications. The CSP yields higher liquid products than MAP. Also, the pyrolysis oil obtained from the CSP had significantly more levoglucosan and acetic acid compared to that of the MAP.  相似文献   

16.
Pyrolysis kinetics of thermal decomposition of bitumen was investigated by thermogravimetric analysis (TGA). TGA experiments were conducted at multiple heating rates of 5, 10, 20°C min–1 up to 800°C to obtain the pyrolysis characteristics of bitumen. Weight loss curve from TGA shows that two different stages occurred during bitumen pyrolysis. Differential method has been used for determining the kinetic parameters and the best fit for the order of reaction was found based on the R2 values. Kinetics results confirm the presence of two different stages in bitumen pyrolysis with varying kinetic parameters. The average activation energy for the first and second stage was 29 and 60 kJ mol?1 and the average order of the reaction was 1.5 and 0.25, respectively. Experiments have been conducted with different reservoir sand. The effect of different source of sand reveals no effect on the pyrolysis behaviour of bitumen. A considerable difference was found with the pyrolysis of bitumen–sand mixtures and bitumen alone based on coke yield and activation energy. © 2011 Canadian Society for Chemical Engineering  相似文献   

17.
Various softwood and hardwood bark residues, primary sludges and softwood sawdust residues were processed by vacuum pyrolysis in a laboratory scale batch reactor. The pyrolysis oil, water, charcoal, and gas were recovered and analyzed. The pyrolysis oils were analyzed in details for their content in phenolic compounds after derivatization to their acetyl derivatives. The influence of temperature, heating rate, feedstock bed thickness, particle size and feedstock water pretreatment on the yield of phenols was investigated. The highest yield of phenols was obtained when hardwood bark was soaked in water for 48 hours and pyrolyzed at a temperature of 450°C and a heating rate of 10°C/min. Pyrolysis performance was evaluated in terms of total phenolic yield and composition.  相似文献   

18.
The kinetics and modelling of coal gasification were studied in the newly developed fluidized bed thermogravimetric analyzer. The total weight loss obtained from the fluidized bed reactor and the total gas product are in general agreement. The presented model for the micro‐fluidized bed reactor encompasses the kinetics of coal pyrolysis as well as the gasification reactions. For coal pyrolysis, the resulting activation energies for the individual gases were 34.7 to 59.8 kcal/mol. These values are 19 to 21 % lower than those found in the literature for similar coals. This decrease of the activation energies of the endothermic pyrolysis reactions is attributed to a gradient of temperature of 185 to 209 °C. The obtained activation energy for the CO shift reaction is 46.6 kcal/mol, increasing by 20 % from the one used in the literature. This increase of the activation energy of such a mildly exothermic reaction represents an equivalent of 170 °C gradient of temperature. The effects of temperature on the yield and the composition of the gas product are studied. Experimental results and equilibrium data are also compared. The model shows reasonably good agreement with the experimental results, except for the water gas shift reaction.
  相似文献   

19.
Thermal degradation of polydimethylsiloxane (PDMS) polymers having hydroxyl (PS) and vinyl (PS‐V) terminals was studied by pyrolysis‐gas chromatography (PGC) in the temperature range from 550 to 950°C. The degradation products were primarily cyclic oligomers ranging from trimer (D3) to cyclomer D11 and minor amounts of linear products and methane. The product composition varied significantly with pyrolysis temperature and extent of degradation. A new method was developed to derive a mass loss‐temperature curve (pyrothermogram, PTG) and to determine the kinetic parameters of decomposition (k, n, and Ea) from sequential pyrolysis studies. It was shown that isothermal rate constants can be derived from repeated pyrolysis data. Good agreement between the rate constants derived from the two methods validates the methodology adopted. This was further confirmed from thermogravimetric studies. The Ea values for the decomposition of PS and PS‐V derived from sequential pyrolysis were 40 ± 2 and 46 ± 2 kcal mol−1, respectively. Various mechanisms for the degradation of PDMS were reviewed and discussed in relation to the PGC results. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 441–450, 1999  相似文献   

20.
Poly(vinyl chloride) PVC pyrolysis and hydrolysis are conducted in a fixed bed reactor and in an autoclave, respectively, under different operating conditions such as the temperature and time. The product distribution is studied. For the PVC pyrolysis process, the main gas product is HCl (55% at 340°C), there is 9% hydrocarbon gas (C1–C5), the liquid product fraction is about 5% (at 340°C), and the solid residue fraction is about 31% (at 340°C). For the hydrolysis process, the main gas product is HCl (55.8% at 240°C) and the solid residue is about 49.6% (at 240°C). The pyrolysis liquid product is analyzed by using gas chromatography with magic‐angle spinning. Aromatic hydrocarbons are the main class (90%), of which the major part is benzene (33%). The residue produced through pyrolysis and hydrolysis is investigated by high‐resolution solid‐state 13C‐NMR. These details revealed by the high‐field NMR spectra provide importmant information about the chemical changes in the PVC pyrolysis and hydrolysis process. The mechanism of PVC hydrolysis dechlorination is also discussed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3252–3259, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号