首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A one‐phase synthesis of AuNPs‐polymer nanocomposites using HAuCl4 as the precursor is reported in this article. A flexible polymer, poly(2‐(4‐(di(1H‐indol‐3‐yl)methyl)phenoxy) ethyl methacrylate) (PMPEM), containing indole groups on the side chain was utilized as both a reducing reagent and soft template in the system. The PMPEM‐Au nanocomposites with three different sizes of AuNPs (25–50, 2, and 5 nm) were obtained just through choosing different solvents such as toluene, tetrahydrofuran (THF), and N,N‐dimethylformamide, respectively. Nanocomposites including the size of 25–50 and 2 nm AuNPs showed strong NLO absorption and refraction behaviors. The nonlinear refractive index n2 of PMPEM‐Au nanocomposites prepared in toluene and THF were 9.35 × 10?11 and 1.85 × 10?10 m2/W, third‐order susceptibility χ(3) were 2.55 × 10?11 and 4.26 × 10?11 esu, respectively. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
Hyperbranched polystyrenes (PS) were prepared by living radical photopolymerization of N,N‐diethyldithiocarbamoylmethylstyrene (DTCS) as an inimer under UV irradiation. Branched PS with an average chain length between branching points of four styrene units was also prepared by living radical copolymerization of DTCS with styrene. The ratio of radius of gyration to hydrodynamic radius RG/RH for these hyperbranched polymers was in the range 0.82–0.89 in toluene. The translational diffusion coefficient D(C) showed a constant value in the range of 0–14 × 10?3 g ml?1 in toluene. It was found from these dilute solution properties that hyperbranched PSs formed a unimolecular structure even in a good solvent because of their compact nature. These hyperbranched PSs exhibited large amounts of photofunctional carbamate (DC) groups on their outside surfaces. Subsequently, we derived amphiphilic star‐hyperbranched copolymers by grafting from hyperbranched macroinitiator with 1‐vinyl‐2‐pyrrolidinone. These star‐hyperbranched copolymers were soluble in water and methanol. © 2001 Society of Chemical Industry  相似文献   

3.
Organic/inorganic hybrid silica membranes were prepared from 1,1,3,3‐tetraethoxy‐1,3‐dimethyl disiloxane (TEDMDS) by the sol‐gel technique with firing at 300–550°C in N2. TEDMDS‐derived silica membranes showed high H2 permeance (0.3–1.1 × 10?6 mol m?2 s?1 Pa?1) with low H2/N2 (~10) and high H2/SF6 (~1200) perm‐selectivity, confirming successful tuning of micropore sizes larger than TEOS‐derived silica membranes. TEDMDS‐derived silica membranes prepared at 550°C in N2 increased gas permeances as well as pore sizes after air exposure at 450°C. TEDMDS had an advantage in tuning pore size by the “template” and “spacer” techniques, due to the pyrolysis of methyl groups in air and Si? O? Si bonding, respectively. For pore size evaluation of microporous membranes, normalized Knudsen‐based permeance, which was proposed based on the gas translation model and verified with permeance of zeolite membranes, reveals that pore sizes of TEDMDS membranes were successfully tuned in the range of 0.6–1.0 nm. © 2011 American Institute of Chemical Engineers AIChE J, 2011  相似文献   

4.
Grafting of acrylic acid onto cocoyam starch, Xanthosoma sagittitolium was initiated by ceric ion—N,N′‐dimethylacetamide redox pair in aqueous media. The reaction was characterized by high graft yields of up to 676%, and infrared spectroscopy affirmed the presence of grafted polymer. Graft yield was enhanced by N,N′‐dimethylacetamide (DMAc) in the concentration range, 9.0–36.0 × 10?4M but lower concentrations were more favorable with the ratio of percentage graft, Pg/Pg0, in the presence and absence of DMAc respectively, of up to 1.34 at 9.0 × 10?4M of the latter. Ceric ion was nonterminating of the graft reaction and a 10‐fold increase in its concentration of 4.16 × 10?3M resulted in high efficiency of graft of 50.2% in monomer conversion to grafted polymer. Enhanced homopolymer formation and low efficiency of graft were observed at monomer concentration greater than 0.69M. Long reaction time, greater than 30 min, was unfavorable to the graft reaction and the latter showed negative dependence on temperature in the range, 30–50°C. At 30‐min reaction time, the graft yield at 50°C was not more than 70% of the corresponding value at 30°C. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
The optimum conditions for grafting N‐vinyl‐2‐pyrrolidone onto dextran initiated by a peroxydiphosphate/thiourea redox system were determined through the variation of the concentrations of N‐vinyl‐2‐pyrrolidone, hydrogen ion, potassium peroxydiphosphate, thiourea, and dextran along with the time and temperature. The grafting ratio increased as the concentration of N‐vinyl‐2‐pyrrolidone increased and reached the maximum value at 24 × 10?2 mol/dm3. Similarly, when the concentration of hydrogen ion increased, the grafting parameters increased from 3 × 10?3 to 5 × 10?3 mol/dm3 and attained the maximum value at 5 × 10?3 mol/dm3. The grafting ratio, add‐on, and efficiency increased continuously with the concentration of peroxydiphosphate increasing from 0.8 × 10?2 to 2.4 × 10?2 mol/dm3. When the concentration of thiourea increased from 0.4 × 10?2 to 2.0 × 10?2 mol/dm3, the grafting ratio attained the maximum value at 1.2 × 10?2 mol/dm3. The grafting parameters decreased continuously as the concentration of dextran increased from 0.6 to 1.4 g/dm3. An attempt was made to study some physicochemical properties in terms of metal‐ion sorption, swelling, and flocculation. Dextran‐gN‐vinyl‐2‐pyrrolidone was characterized with infrared spectroscopy and thermogravimetric analysis. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
Hydrogels based on N‐acryloyl‐N′‐methylpiperazine (AcrNMP) swelled extensively in solutions of low pH due to the protonation of the tertiary amine. The water transport in the gels under an acidic condition was non‐Fickian and nearly Fickian in neutral pH with the collective diffusion coefficients determined as 2.08 × 10−7 and 5.00 × 10−7 cm−2 s−1, respectively. These gels demonstrated good metal‐uptake behavior with various divalent metal ions, in particular, copper and nickel, with the uptake capacity increased with increasing pH. The swelling ratio of the gel in the presence of metal ions decreased with increasing metal ion uptake. The results suggest that high metal ion uptake can lead to physical crosslinking arising from the interchain metal complex formation. The metal‐loaded gels could be stripped easily with 1M H2SO4 without any loss in their uptake capacity. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 268–273, 2001  相似文献   

7.
The oxidative polycondensation reaction conditions of 2‐(2‐hydroxybenzylideneamino)‐6‐phenyl‐4,5,6,7‐tetrahydrobenzo[b]thiophene‐3‐carbonitrile were examined. The magnitude of the reflectance of the polymer decreases sharply with increasing of wavelength up to 524 nm, then reflectance of the polymer increases slowly with increasing of wavelength. The refractive index values of the polymer vary from 1.474 to 2.350. The Ep and Ed values of the polymer were found to be 4.56 and 7.068 eV, respectively. Absorption coefficient K of the polymer is of the order 817.062–1434.77 m?1. Angle values of incidence and refraction of the polymer vary from 57.36 to 66.95° and from 23.05 to 32.65°, respectively. The film‐phase thickness of the polymer increases with increasing photon energy. The thickness, d, of the polymer was of the order 439.3–4184.7 Å for 190 and 1100 nm, respectively. The real part of dielectric constant of the polymer decreases slowly with increasing of frequency up to about 600 THz, then the real part of dielectric constant of the polymer increases sharply with increasing of frequency. The real and imaginary parts of dielectric constant of the polymer vary from 2.17 to 5.52 and from 5.81 × 10?5 to 3.58 × 10?4, respectively. Finally, polymer was tested for antibacterial activities against some bacteria. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

8.
The solution polymerization of acrylamide (AM) on cationic guar gum (CGG) under nitrogen atmosphere using ceric ammonium sulfate (CAS) as the initiator has been realized. The effects of monomer concentration and reaction temperature on grafting conversion, grafting ratio, and grafting efficiency (GE) have been studied. The optimal conditions such as 1.3 mol of AM monomer and 2.2 × 10?4 mol of CAS have been adopted to produce grafted copolymer (CGG1‐g‐PAM) of high GE of more than 95% at 10°C. The rates of polymerization (Rp) and rates of graft copolymerization (Rg) are enhanced with increase in temperature (<35°C).The Rp is enhanced from 0.43 × 10?4 mol L?1 s?1 for GG‐g‐PAM to 2.53 × 10?4 mol L?1 s?1 for CGG1‐g‐PAM (CGG1, degree of substitute (DS) = 0.007), and Rg from 0.42 × 10?4 to 2.00 × 10?4 mol L?1 s?1 at 10°C. The apparent activation energy is decreased from 32.27 kJ mol?1 for GG‐g‐PAM to 8.09 kJ mol?1 for CGG1‐g‐PAM, which indicates CGG has higher reactivity than unmodified GG ranging from 10 to 50°C. Increase of DS of CGG will lead to slow improvement of the polymerization rates and a hypothetical mechanism is put forward. The grafted copolymer has been characterized by infrared spectroscopy, thermal analysis, and scanning electron microscopy. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3715–3722, 2007  相似文献   

9.
In this article, graft copolymerization of N‐vinyl‐2‐pyrrolidone onto xanthan gum initiated by potassium peroxydiphosphate/Ag+ system in an aqueous medium has been studied under oxygen free nitrogen atmosphere. Grafting ratio, grafting efficiency, and add on increase on increasing the concentration of potassium peroxydiphosphate (2.0 × 10?3 to 12 × 10?3 mol dm?3), Ag+(0.4 × 10?3 to 2.8 × 10?3 mol dm?3), and hydrogen ion concentration from 2 × 10?3 to 14.0 × 10?3 mol dm?3. Maximum grafting has been obtained when xanthan gum and monomer concentration were 0.4 g dm?3 and 16 × 10?2 mol dm?3, respectively, at 35°C and 120 min. Water swelling capacity, swelling ratio, metal ion uptake, and metal retention capacity have also been studied, and it has been found that graft copolymer shows enhancement in these properties than pure xanthan gum. The graft copolymer has been characterized by FTIR and thermal analysis. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
Dynamic adsorption behavior between Cu2+ ion and water‐insoluble amphoteric starch was investigated. The sorption process occurs in two stages: external mass transport occurs in the early stage and intraparticle diffusion occurs in the long‐term stage. The diffusion rate of Cu2+ ion in both stages is concentration dependent. In the external mass‐transport process, the diffusion coefficient (D1) increases with increasing initial concentration in the low‐ (1 × 10?3‐4 × 10?3M) and high‐concentration regions (6 × 10?3‐10 × 10?3M). The values of adsorption activation energy (kd1) in the low‐ and high‐concentration regions are 15.46–24.67 and ?1.80 to ?11.57 kJ/mol, respectively. In the intraparticle diffusion process, the diffusion coefficient (D2) increases with increasing initial concentration in the low‐concentration region (1 × 10?3‐2 × 10?3M) and decreases with increasing initial concentration in the high‐concentration region (4 × 10?3‐10 × 10?3M). The kd2 values in the low‐ and high‐concentration regions are 9.96–15.30 and ?15.53 to ?10.71 kJ/mol, respectively. These results indicate that the diffusion process is endothermic in the low‐concentration region and is exothermic in the high‐concentration region for both stages. The external mass‐transport process is more concentration dependent than the intraparticle diffusion process in the high‐concentration region, and the dependence of concentration for both processes is about equal in the low‐concentration region. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2849–2855, 2001  相似文献   

11.
N‐Dodecyl‐N,N‐di(2‐hydroxyethyl) amine oxide (C12DHEAO) and N‐stearyl‐N,N‐di(2‐hydroxyethyl) amine oxide (C18DHEAO) were synthesized with N‐alkyl‐diethanolamine and hydrogen peroxide. Their chemical structures were confirmed using 1H‐NMR spectra, mass spectral fragmentation and FTIR spectroscopic analysis. It was found that C12DHEAO and C18DHEAO reduced the surface tension of water to a minimum value of approximately 28.75 mN m?1 at concentration of 2.48 × 10?3 mol L?1 and 32.45 mN m?1 at concentration of 5.21 × 10?5 mol L?1, respectively. The minimum interfacial tension (IFTmin) and the dynamic interfacial tension (DIT) of oil–water system were measured. When C18DHEAO concentration was in the range of 0.1–0.5%, the IFTmin between liquid paraffin and C18DHEAO solutions all reached the ultra‐low interfacial tension. Furthermore, their foam properties were investigated by Ross‐Miles method, and the height of foam of C12DHEAO was 183 mm. It was also found that they showed strong emulsifying power.  相似文献   

12.
BACKGROUND: This paper reports an analysis of the mass transfer behaviour of CO2 absorption in hollow fibre membrane modules in parallel and cross‐flow dispositions. The ionic liquid EMISE, 1‐ethyl‐3‐methylimidazolium ethylsulfate, is used to achieve a zero solvent emission process and the experimental results are compared with CO2 permeation through the membrane, without solvent in the lumenside. RESULTS: Overall mass transfer coefficients Koverall, CF = (0.74 ± 0.02) × 10?6 m s?1 and Koverall, PF = (0.37 ± 0.018) × 10?6 m s?1 were obtained for cross‐flow and parallel flow, respectively. These values are one order of magnitude lower than the coefficient obtained in permeability experiments, Koverall, PERM = (6.16 ± 0.1) × 10?6 m s?1, indicating the influence of the absorption in the process. Including the specific surface and gas volume of each contactor in the analysis, a similar value of a first‐order kinetic rate constant, KR = 2.7 × 10?3 s?1 is obtained, showing that the interfacial chemical reaction CO2‐ionic liquid is the slow step in the absorption process. CONCLUSION: An interfacial chemical reaction rate constant KR = 2.7 × 10?3 s?1, describes the behaviour of the CO2 absorption in the ionic liquid EMISE using membrane contactors in parallel and cross‐flow dispositions. Copyright © 2012 Society of Chemical Industry  相似文献   

13.
Highly branched poly(N‐isopropylacrylamide) (PNIPAM) has been synthesized by a reversible addition‐fragmentation chain transfer (RAFT) copolymerization of NIPAM and a vinyl contained trithiocarbonate RAFT agent. 1H‐NMR measurements revealed that the degrees of branch (DB) are in the range of 0.032–0.105. Laser light scattering (LLS) measurements gave the hydrodynamic radii (Rh) of the polymers to be 3.6–5.7 nm with molecular weight in the range of 1.3 × 104 g/mol–2.3 × 10?4 g/mol. Highly branched PNIPAM with terminal thiol groups were obtained by aminolysis the polymers, and the product can be oxidized by air to form disulfide bonds (? S? S? ) among chains and resulting in the formation of nanoparticle in aqueous solution. Interestingly, the nanoparticle in size of Rh ? 80 nm showed a thermogelling behavior to form bulk hydrogel when the temperature was increased up to 25°C due to the thermo‐induced association of the PNIPAM chains among the nanoparticles. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
Biosensor detecting techniques have attracted much attention in the content determination of H2O2, which has been used illegally as a food additive. An electrochemical biosensing membrane for the detection of H2O2 was developed with C6‐OH of chitosan immobilized cyclodextrin derivates (6‐CD–CTS), which possessed a high cyclodextrin loading capacity (2.12 × 10?4 mol/g), as the carrier. The biosensor was prepared through the inclusion of ferrocene as the electron mediator in a hydrophobic cavity of cyclodextrin and crosslinking catalase (CAT) to 2‐NH2 of 6‐CD–CTS. The ferrocene‐included complex was evaluated by ultraviolet–visible spectrophotometry and thermogravimetric analysis. Its electrochemical behavior was also studied. The impact of the reaction conditions on the CAT immobilization capacity was evaluated. When previous membrane was used to detect the concentration of H2O2 (CH2O2), we found that the catalysis of CAT and the signal amplification of ferrocene had a major impact on the cyclic voltammograms. The optimal working pH of the modified electrode was 7.0. The peak current (I) had a linear relationship with the H2O2 concentration (CH2O2) in the range 1.0 × 10?4 to 1.0 × 10?3 mol/L. The linear regression equation was I = 0.00475CH2O2 ? 0.03025. The detection limit was 10?6 mol/L. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41499.  相似文献   

15.
In this work, hydrogen (H2) permeation fluxes through 230 nm‐thick graphene oxide (GO) membrane deposited on porous YSZ hollow fiber were measured and correlated to an explicit H2 permeation model. H2 fluxes through such GO‐YSZ hollow fiber membrane increased from 4.83 × 10?8 mol cm?2 s?1 to 2.11 × 10?7 mol cm?2 s?1 with temperature rise from 20 to 100 °C. The activation energy of H2 permeation was determined by the linear regression of the experimental data and was applied in the theoretical calculations. The model predictions fit well the temperature dependent and the argon sweep gas flow rate dependent H2 fluxes data. Using the derived permeation model, the effects of vacuum pressure at lumen side and H2 partial pressure at shell side, membrane area, and GO membrane film thickness on the membrane performance were simulated and discussed to provide insights for practical applications. © 2018 American Institute of Chemical Engineers AIChE J, 64: 2711–2720, 2018  相似文献   

16.
The paper describes the synthesis of block copolymers of methyl methacrylate (MMA) and N‐aryl itaconimides using atom‐transfer radical polymerization (ATRP) via a poly(methyl methacrylate)–Cl/CuBr/bipyridine initiating system or a reverse ATRP AIBN/FeCl3·6H2O/PPh3 initiating system. Poly(methyl methacrylate) (PMMA) macroinitiator, ie with a chlorine chain‐end (PMMA‐Cl), having a predetermined molecular weight (Mn = 1.27 × 104 g mol?1) and narrow polydispersity index (PDI = 1.29) was prepared using AIBN/FeCl3·6H2O/PPh3, which was then used to polymerize N‐aryl itaconimides. Increase in molecular weight with little effect on polydispersity was observed on polymerization of N‐aryl itaconimides using the PMMA‐Cl/CuBr/Bpy initiating system. Only oligomeric blocks of N‐aryl itaconimides could be incorporated in the PMMA backbone. High molecular weight copolymer with a narrow PDI (1.43) could be prepared using tosyl chloride (TsCl) as an initiator and CuBr/bipyridine as catalyst when a mixture of MMA and N‐(p‐chlorophenyl) itaconimide in the molar ratio of 0.83:0.17 was used. Thermal characterization was performed using differential scanning calorimetry (DSC) and dynamic thermogravimetry. DSC traces of the block copolymers showed two shifts in base‐line in some of the block copolymers; the first transition corresponds to the glass transition temperature of PMMA and second transition corresponds to the glass transition temperature of poly(N‐aryl itaconimides). A copolymer obtained by taking a mixture of monomers ie MMA:N‐(p‐chlorophenyl) itaconimide in the molar ratio of 0.83:0.17 showed a single glass transition temperature. Copyright © 2005 Society of Chemical Industry  相似文献   

17.
Unreported graft copolymer of N,N′‐dimethylacrylamide (DMA) with partially carboxymethylated guar gum (CmgOH) has been synthesized and the reaction conditions have been optimized for affording maximum grafting using a potassium peroxymonosulphate (PMS)/thiourea (TU) redox initiators under nitrogen atmosphere. The study of graft copolymerization has been performed to observe maximum value of grafting parameters except percentage of homopolymer by varying the concentrations of DMA, PMS, and TU. The grafting parameters increase continuously on increasing the concentration of DMA from 8 × 10?2 to 24 × 10?2 mol dm?3, PMS from 5 × 10?3 to 21 × 10?3 mol dm?3, and TU from 1.6 × 10?3 to 4.8 × 10?3 mol dm?3. The optimum temperature and time for grafting of DMA onto CmgOH were found to be 35°C and 120 min, respectively. The water‐swelling capacity of graft copolymer is investigated. Flocculation property for both coking and noncoking coals is studied for the treatment of coal mine waste water. The graft copolymer is characterized by Fourier transform infrared spectroscopy and thermogravimetric analysis. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
Dynamic light scattering (DLS) has been used to quantify nanoscale heterogeneity in the industrially significant polyacrylonitrile (PAN) polymer solution. The heterogeneity in polymer solution, traced by the ratio of amplitudes of the slow to fast mode, is observed to be related to various parameters, such as molecular weight of the polymer, the type of co‐monomer, processing time, concentration of the solution, and the choice of the solvents. It has been identified that low molecular weight PAN homopolymer have the least heterogeneity issues. Amongst the chosen co‐polymers for this study, similar degree of heterogeneity was observed at concentration slightly above the critical concentration at which the polymer chains begin to overlap. Whereas, at higher concentration, PAN‐methacrylic acid (4 wt%) copolymer showed the least heterogeneity issue. The aggregate diffusion coefficient of PAN‐methacrylic acid (4 wt%) copolymer solution in dimethylformamide (DMF) and N,N‐dimethylacetamide (DMAc) are respectively determined to be ~1.6 × 10?12 cm2/s and ~1.6 × 10?13 cm2/s, which results in an estimated aggregate size of 9 nm and 90 nm. POLYM. ENG. SCI., 55:1403–1407, 2015. © 2015 Society of Plastics Engineers  相似文献   

19.
Polyacrylamide‐b‐poly(methacrylic acid) was prepared on the surface of Au electrode (Au/PAM/PMAA) for Pb2+ ion electrochemical sensing via metal‐free visible‐light‐induced atom transfer radical polymerization, which was very simple, convenient, and environmentally friendly. Au/PAM/PMAA was carefully examined by cyclic voltammetry, electrochemical impedance spectroscopy, and X‐ray photoelectron spectroscopy. Further, Au/PAM/PMAA was successfully used for the determination of Pb2+ ion by differential pulse anodic stripping voltammetry. Under the optimal conditions, a linear response from 1.0 × 10?11 to 1.0 × 10?4 mol/L with detection limit of 2.5 × 10?12 mol/L (S/N = 3) was achieved from the results of experiments. Comparing with similar Pb2+ sensors, the broader linear range and lower detection limit suggested the promising prospect of Au/PAM/PMAA. In a word, the work of this article had an important significance for the polymer‐modified electrodes and the sensitive detection of Pb2+. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45863.  相似文献   

20.
The intrinsic viscosities, [η], of nine cellulose samples, with molar masses from 50 × 103 to 1 390 × 103 were determined in the solvents NMMO*H2O (N‐methyl morpholin N‐oxide hydrate) at 80°C and in cuen (copper II‐ethlenediamine) at 25°C. The evaluation of these results with respect to the Kuhn–Mark–Houwink relations shows that the data for NMMO*H2O fall on the usual straight line in the double logarithmic plots only for M ≤ 158 103; the corresponding [η]/M relation reads log ([η]/mL g−1) = –1.465 + 0.735 log M. Beyond that molar mass [η] remains almost constant up to M ≈ 106 and increases again thereafter. In contrast to NMMO*H2O the cellulose solutions in cuen behave normal and the Kuhn–Mark–Houwink relation reads log ([η]/mL g−1) = −1.185 + 0.735 log M. Possible reasons for the dissimilarities of the behavior of cellulose in these two solvents are being discussed. The comparison of three different methods for the determination of [η] from viscosity measurements at different polymer concentrations, c, demonstrates the advantages of plotting the natural logarithm of the relative viscosities as a function of c. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号