首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variations in the speciation of iron in the northern North Sea were investigated in an area covering at least two different water masses and an algal bloom, using a combination of techniques. Catalytic cathodic stripping voltammetry was used to measure the concentrations of reactive iron (FeR) and total iron (FeT) in unfiltered samples, while dissolved iron (FeD) was measured by GFAAS after extraction of filtered sea water. FeR was defined by the amount of iron that complexed with 20 μM 1-nitroso-2-napthol (NN) at pH 6.9. FeT was determined after UV-digestion at pH 2.4. Concentrations of natural organic iron complexing ligands and values for conditional stability constants, were determined in unfiltered samples by titration. Mean concentrations of 1.3 nM for FeR, 10.0 nM for FeT and 1.7 nM for FeD were obtained for the area sampled. FeR concentrations increased towards the south of the area investigated, as a result of the increased influence of continental run off. FeR concentrations were found to be enhanced below the nutricline (below 40 m) as a result of the remineralisation of organic material. Enhanced levels of FeT were observed in some surface samples and in samples collected below 30 m at stations in the south of the area studied, thought to be a result of high concentrations of biogenic particulate material and the resuspended sediments respectively. FeD concentrations varied between values similar to those of FeT in samples from the north of the area to values similar to those of FeR in the south. The bloom was thought to have influenced the distribution of both FeR and FeT, but less evidence was observed for any influence on FeR and FeD. The concentration of organic complexing ligands, which could possibly include a contribution from adsorption sites on particulate material, increased slightly in the bloom area and in North Sea waters. Iron was found to be fully (99.9%) complexed by the organic complexing ligands at a pH of 6.9 and largely complexed (82–96%) at pH 8. The ligands were almost saturated with iron suggesting that the ligand concentration could limit the concentration of iron occurring as dissolved species.  相似文献   

2.
K. Strohle  M. D. Krom 《Marine Geology》1997,140(3-4):231-236
The sediments of the eastern Mediterranean basin contain a series of organic-rich sapropels intercalated with organic-poor nannofossil oozes. Until recently the timing of the onset of sapropel formation was not known accurately because of the low resolution achievable by conventional radiocarbon dating. Compilation of all available 14C-AMS dates show that the base of S-1 (the most recent sapropel) was initiated 8800 years B.P. (14C age corrected by 400 years for reservoir effect) under a 500 m water column and moved progressively into deeper water reaching depths of 3500 m at 8200 years B.P. The linear correlation between the age of S-1 onset and water depth suggests that formation of sapropels moved into deeper water at a rate of 1000 m/200 year. A model is suggested in which export production which sank below the well-mixed surface layers (500 m) was respired consuming dissolved oxygen in the Levantine deep water until a threshold value was reached when sapropels began to be preserved in the sediment. This resulted in a progressively deepening oxygen minimum zone with time until eventually the entire deep water in the basin was oxygen depleted. Assuming that the threshold value for sapropel formation was complete anoxia, it was calculated that primary productivity in the basin during the deposition of S-1 was a factor of 5 greater than that found at present.  相似文献   

3.
R. Quinn  J. M. Bull  J. K. Dix 《Marine Geology》1997,140(3-4):405-413
A 3-dimensional seismic reflection survey (using a Chirp source) of the excavated Mary Rose wreck site (King Henry VIII's flagship, wrecked in 1545) was conducted in the East Solent, off the south coast of England. The high resolution geophysical survey identified two ‘brightspot' anomalies, buried to a depth of 4–5 m, trending east–west adjacent to the western margin of the excavation hole. These anomalous reflectors are interpreted as infilled palaeo-scour features associated with the wrecking and subsequent degradation of the Mary Rose. The features were previously unrecognized on the site, and to the authors' knowledge this is the first time that such preserved longitudinal palaeo-scour marks have been recognized in the sedimentary record. Implications associated with the preservation and identification of the scour features are discussed.  相似文献   

4.
Field measurements of bottom boundary layer and sediment-transport processes were made on the Louisiana inner continental shelf in spring 1992 at a depth of 15.5 m, and in spring and summer 1993 at a depth of 20.5 m. Two different wave–current boundary layer/sediment-transport models were applied to the measured near-bed flows. In addition, the log-profile method was applied to estimate hydraulic roughness and bed stress. Consistent with the results of others, our measurements show that near-bed flows were very weak under non-storm conditions. Bed stresses were typically too low to resuspend bed sediments. However, the advection of high-turbidity layers or plumes past the instrumentation apparently caused a sustained period of high suspended sediment concentration throughout the log layer in spring 1993. In the absence of wave activity or high suspended sediment concentrations, boundary layer profiles showed the bed to have been hydraulically very smooth with cm. However, wave agitation, combined with increased suspended sediment concentration caused hydraulically rough conditions with cm.  相似文献   

5.
In the marine environment, stability of the glacier terminus and the location of subglacial streams are the dominant controls on the distribution of grounding-line deposits within morainal banks. A morainal bank complex in Muir Inlet, Glacier Bay, SE Alaska, is used to develop a model of terminus stability and location of subglacial streams along the grounding line of temperate marine glaciers. This model can be used to interpret former grounding-line conditions in other glacimarine settings from the facies architecture within morainal bank deposits.The Muir Inlet morainal bank complex was deposited between 1860 A.D. and 1899 A.D., and historical observations provide a record of terminus positions, glacial retreat rates and sedimentary sources. These data are used to reconstruct the depositional environment and to develop a correlation between sedimentary facies and conditions along the grounding line.Four seismic facies identified on the high-resolution seismic-reflection profiles are used to interpret sedimentary facies within the morainal bank complex. Terminus stability is interpreted from the distribution of sedimentary facies within three distinct submarine geomorphic features, a grounding-line fan, stratified ridges, and a field of push ridges. The grounding-line fan was deposited along a stable terminus and is represented on seismic-reflection profiles by two distinct seismic facies, a proximal and a distal fan facies. The proximal fan facies was deposited at the efflux of subglacial streams and indicates the location of former glacifluvial discharges into the sea. Stratified ridges formed as a result of the influence of a quasi-stable terminus on the distribution of sedimentary facies along the grounding line. A field of push ridges formed along the grounding line of an unstable terminus that completely reworked the grounding-line deposits through glacitectonic deformation.Between 1860 A.D. and 1899 A.D. (39 years),

m3 of sediment were deposited within the Muir Inlet morainal bank complex at an average annual sediment accumulation rate of

m3/a. This rate represents the annual sediment production capacity of the glacier when the Muir Inlet drainage basin is filled with glacial ice.  相似文献   

6.
Sinking particles collected from year-long time-series sediment traps at 1674, 4180, 5687 and 8688 m depths, the underlying bottom sediment at 9200 m depth, and suspended particles from surface and subsurface waters in the northwestern North Pacific off Japan were analyzed for long-chain alkenones and alkyl alkenoates (A&A) which are derived mainly from Gephyrocapsacean algae, especially Emiliania huxleyi and Gephyrocapsa oceanica. Alkenone temperature records in sediment trap samples at 1674 m were almost similar to observed sea surface temperatures (SST) with a time delay of one half to one full month. However, alkenone temperatures in trap samples were about slightly lower than measured SST in late spring to early fall. The lowering might be caused by formation of the seasonal thermocline. Nevertheless, these temperature drops observed in trap samples were smaller than those actually observed in a subsurface layer off central Japan. Vertical profiles of A&A concentrations and alkenone temperatures in suspended particles collected from the subsurface waters in early fall indicated that these compounds were produced mostly in a surface mixed layer above the depth of the chlorophyll maximum even in warm seasons. These results suggested that alkenone temperatures strongly reflected SST rather than the temperatures of thermocline waters in these study areas even in such a warm season. Pronounced maxima in A&A fluxes found in sediment trap samples at 1674 m in late spring to summer showed that A&A productions were highest during the periods of spring bloom, according to a time delay between alkenone temperatures and observed SST. Seasonal patterns of alkenone records in trap samples at 4180 and 5687 m could also preserve SST signals well, suggesting that A&A in deep sea waters were mainly derived from primary products in the surface layer. A&A fluxes tended to decrease with water depth, and the ratios of A&A to particulate organic carbon (POC) rapidly decreased in underlying bottom sediment. This clearly indicates that A&A were decomposed and diluted by other refractory organic materials in either the water column or the sediment–water interface. However, A&A compositions were consistently uniform between the trap samples and the underlying bottom sediments, so that A&A could not qualitatively alter during early diagenetic processes.  相似文献   

7.
Petrographic data obtained from 182 surface sediment samples together with the available bathymetric data are used to investigate the effects of the last major sea-level changes on shelf evolution in the southern Sea of Marmara. Grain-size analysis reveals the presence of at least three belts or zones which are rich in coarse-grained (sand and gravel) sediments. These coarse-grained belts which are up to 45 km long, 15 km wide, show up to 20 m of relief and are presently found at 40–80 m (average 60 m) water depths. Based on microscopic examination and residual analysis, the sediments from these belts are interpreted as indicators of high-energy shallow waters where detrital siliciclastics, with some benthic contribution, accumulated. The presence of a 62–65 m deep sill in the Çanakkale Strait and the consideration of sea-level curves would suggest that the Marmara shelves must have been subaerially exposed down to −65 m water depths for about 10,000 yrs (22,000–12,000 yrs B.P.), sufficient time to modify former shelf topographies and form such bottom relief. While difficult to date, we believe that coarse-grained belts found on the southern Marmara shelf must be relict (i.e., former shorelines, beaches) and their formation is largely related to low stands of sea-level during the Late Pleistocene regression and early Holocene transgression. However, the available high-resolution seismic profiling data suggest that the neotectonism in this seismically active Sea of Marmara plays an important role to explain the raise of these older shorelines to their present levels on the sea-floor.  相似文献   

8.
Simrad EM12 backscatter strength data of the Southwest Indian Ridge (SWIR), between 57°E and 70°E, are used to reveal the along-axis segmentation of this super slow-spreading ridge. The backscatter properties of different geologic domains, like bathymetric highs and oblique basins within the rift valley, are characterized using 66 small test sites. We show that backscatter strength is higher on bathymetric swells, corresponding to segment centres, and lower in deep oblique basins corresponding to axial non-transform discontinuities and fracture zones. This contrast between segment centres and discontinuities is produced by both a thicker sediment cover and less frequent volcanic eruptions at segment ends. Using the model of Mitchell (1993), sediments have been estimated to be 2 to 5 m thicker in these areas than at segment centres. The distribution of the seamounts within the rift valley is controlling the long-wavelength variations of the mean backscatter strength calculated along the axis. Lower densities of seamounts and thicker sediments are producing lower and heterogeneous reflectivity levels in the deepest part of the axial valley floor between 61°45′E and 63°45′E. We propose that cooler mantle temperatures inducing construction of fewer volcanoes occur beneath this part of the ridge. The mean backscatter strength along the SWIR axis decreases dramatically toward the Rodrigues Triple Junction suggesting that volcanic production is reduced between 68°20′E and 69°20′E and that the transition from amagmatic tectonic deformation at the triple junction to new seafloor spreading occurs between 69°20′E and 70°E.  相似文献   

9.
The role of relative sea-level rise as a cause for the rapid erosion of Louisiana's barrier island coast is investigated through a numerical implementation of a modified Bruun rule that accounts for the low percentage of sand-sized sediment in the eroding Louisiana shoreface. Shore-normal profiles from 150 km of coastline west of the Mississippi delta are derived from bathymetric surveys conducted during the 1880s, 1930s and 1980s. An RMS difference criterion is employed to test whether an equilibrium profile form is maintained between survey years. Only about half the studied profiles meet the equilibrium criterion; this represents a significant limitation on the potential applicability of the Bruun rule. The profiles meeting the equilibrium criterion, along with measured rates of relative sea-level rise, are used to hindcast shoreline retreat rates at 37 locations within the study area. Modeled and observed shoreline retreat rates show no significant correlation. Thus, in terms of the Bruun approach, relative sea-level rise has no power for hindcasting (and presumably forecasting) rates of coastal erosion for the Louisiana barrier islands.  相似文献   

10.
Methyl halides (monohalomethanes), especially methyl bromide, are known to contribute significantly to ozone destruction in the stratosphere. Budgets of natural and anthropogenic methyl bromide suggest that marine organisms may be the source of a significant proportion of the total global production. Since phytoplankton are abundant in surface waters, they are obvious candidates. Cultures of nine phytoplankton species were grown in CO2-enriched, nitrate-limited medium in sealed glass vessels. Species tested include Chaetoceros calcitrans, Isochrysis sp., Porphyridium sp., Synechococcus sp., Phaeodactylum tricornutum, Tetraselmis sp., Prorocentrum sp., Emiliania huxleyi and Phaeocystis sp. Methyl bromide (CH3Br) and methyl chloride (CH3Cl) concentrations were determined by bubbling the cultures with high-purity air, cryotrapping the effluent and analyzing it on a gas chromatograph with an electron capture detector. The Phaeocystis sp. samples were monitored with GCMS. Cell population, bacterial population, Chl a, pH, and nitrate concentration were monitored for periods of at least two weeks. CH3Cl was produced by all cultures. CH3Br was absent in Tetraselmis sp. and Isochrysis sp. cultures, but present in all the others. Methyl iodide (CH3I) was present in most cultures but could not be quantified due to analytical limitations. CH3I and CH3Br production was fastest in stationary phase and continued long after cell division had ceased. Axeic cultures of Phaeocystis sp. achieved almost identical production rates of CH3Cl and CH3Br as xenic cultures of the same species. Species from tropical waters had faster CH3Cl and CH3Br production rates than temperate species. Scaling the observed production rates using global standing stock estimates for Chl a and particulate nitrogen indicate that phytoplankton can account for only a fraction of the CH3Cl and CH3Br believed to be produced in the ocean. Calculations based on the estimated global biomass of Phaeocystis sp. and E. huxleyi blooms show that their contribution is insignificantly small.  相似文献   

11.
The whole core squeezing method was used to simultaneously obtain profiles of nitrous oxide (N2O), nitrogenous nutrients, and dissolved oxygen in sediments of Koaziro Bay, Japan (coastal water), the East China Sea (marginal sea), and the central Pacific Ocean (open ocean). In the spring of Koaziro Bay, subsurface peaks of interstitial N2O (0.5–3.5 cm depth) were observed, at which concentrations were higher than in the overlying water. This was also true for nitrate (NO3) and nitrite (NO2) profiles, suggesting that the transport of oxic overlying water to the depth through faunal burrows induced in situ N2O production depending on nitrification. In the summer of Koaziro Bay, sediment concentrations of N2O, NO3 and NO2 were lower than in the overlying water. In most East China Sea sediments, both N2O and NO3 decreased sharply in the top 0.5–2 cm oxic layer (oxygen: 15–130 μM), which may have indicated N2O and NO3 consumption by denitrification at anoxic microsites. N2O peaks at subsurface depth (0.5–6.5 cm) implied in situ production of N2O and/or its supply from the overlying water through faunal burrows. However, the occurrence of the latter process was not confirmed by the profiles of other constituents. In the central Pacific Ocean, the accumulation of N2O and NO3 in the sediments likely resulted from nitrification. Nitrous oxide fluxes from the sediments, calculated using its gradient at the sediment–water interface and the molecular diffusion coefficient, were −45 to 6.9 nmolN m−2 h−1 in Koaziro Bay in the spring, −29 to −21 nmolN m−2 h−1 in the summer, −46 to 37 nmolN m−2 h−1 in the East China Sea, 0.17 to 0.23 nmolN m−2 h−1 in the equatorial Pacific, and <±0.2 nmolN m−2 h−1 in the subtropical North Pacific, respectively.  相似文献   

12.
James T. Liu  Li-hua Hou 《Marine Geology》1997,140(3-4):367-390
Around the artificially stabilized tidal inlet that connects Kaohsiung Harbor to Taiwan Straight, 203 surficial samples of the sea floor were taken from the nearshore, in the outer harbor, and portions of the inner harbor. The bathymetry of the same area was also surveyed. The sand fraction in each sample was analyzed for the grain-size composition with a custom-built rapid sediment analyzer. A total of twenty-one size-classes were used in the analysis. Three hypothetical sediment sources were assumed to have influenced the spatial grain-size patterns in the study area: the northward and southward littoral drifts, and the sediments exported from the harbor. After reducing the influence of each hypothetical sediment source separately, the data were analyzed using empirical orthogonal (eigen) function (EOF) analysis. The results indicate that the northward long-term littoral drift is the dominant direction of sediment transport in the nearshore of the study area. A conceptual model for four different sediment trapping and bypassing patterns are proposed. (1) Excess bypass (or net outflux): this bypass pattern is characterized by the export of fine-grained sediments (mud and size classes in the very fine sand fraction) from the interior of the harbor. (2) Partial bypass (or partial trapping): this bypass pattern is represented by the size-classes in fine sand fraction. The amount of these grain sizes entering the outer harbor through the inlet is more than the amount exiting at the inlet mouth, resulting in the retention of a portion of these grain sizes. (3) Total bypass (or zero trapping): grain sizes that exhibit this bypass pattern do not come near the mouth of the inlet. These grain sizes include medium and coarse sand fractions. (4) Lag deposits: this group includes the size classes in the very coarse sand fraction, which are largely concentrated in the scour pit immediately seaward of the inlet mouth. In general, surficial sediment grain-size patterns represent a time-averaged response of the substrate to the transport processes over the time scale of at least two seasons. The differential associations of grain-size groups with various topographic features in the study area suggest morpho-textural relationships exist between the sea floor topography and grain size distribution patterns.  相似文献   

13.
A distinct porcellanite layer from the Southwest Indian Ridge intercalated in Pleistocene diatom ooze was studied using nondestructive physical property measurements and sedimentological data. This bed was sampled by two piston cores at a water depth of 2615 m. The 3–5 cm thick porcellanite layer appears in the cores at a depth of 6.03 m (Core PS2089-2) and 7.73 m (Core PS2089-1) below the seafloor. Due to its characteristic physical properties the porcellanite bed can be detected with core measurements, and its distribution and lateral extent mapped with echosounding. The physical index properties, wet bulk density and electrical resistivity, increase significantly across this bed. Magnetic susceptibility is used to compare the lithological units of both cores and to distinguish whether resistivity anomalies are caused by a higher amount of terrigenous components or by the presence of porcellanite. The porcellanite has the special characteristic to affect a positive anomaly in resistivity but not in susceptibility. Most marine sediments, in contrast, show a positive correlation of magnetic susceptibility versus electrical resistivity; therefore a combination of electrical resistivity and magnetic susceptibility logs yields a definite detection of the porcellanite bed. Images from the X-ray CT survey indicate that the porcellanite is lithified and brittle and fragmented when the piston corer penetrated the bed.  相似文献   

14.
High-resolution (3.5 kHz and multi-channel) seismic profiles and piston cores were collected from Maxwell Bay and its tributary embayment, Marian Cove, in the South Shetland Islands, Antarctica, during the Korea Antarctic Research Program (1992/93 and 1995/96) to elucidate the glaciomarine sedimentation processes and recent glacial history of the area. Seismic data from Maxwell Bay reveal a rugged bay margin and flattened basin floor covered with well-stratified hemipelagic muds. On the base-of-slope, acoustically transparent debris flows occur, indicating downslope resedimentation of glaciomarine sediments. Despite the subpolar and ice-proximal settings of Marian Cove, the seafloor is highly rugged with a thin sediment drape, suggesting that much of the area has been recently eroded by glaciers. Sediment cores from the cove penetrated three distinct fining-upward lithofacies: (1) basal till in the lower part of the core, accumulated just seaward of the grounding line of the tidewater glacier; (2) interlaminated sand and mud in the middle part, deposited in ice-proximal zone by a combination of episodic subglacial meltwater inflow and iceberg dumping; and (3) pebbly mud in the upper part, deposited in ice-distal zone by both surface meltwater plume and ice-rafting from the glacier front. A reconstruction of the glacial history of these areas since the late glacial maximum shows an ice sheet filling Maxwell Bay in late Wisconsin time and grounding of the tidewater glacier in Marian Cove until about 1300 yr BP.  相似文献   

15.
CaCO3 and total organic carbon concentrations, organic matter C/N and carbon isotope ratios, and sediment accumulation rates in late Quaternary sediments from DSDP Site 594 provide information about glacial–interglacial variations in the delivery of organic matter to the Chatham Rise offshore of southeastern New Zealand. Low C/N ratios and nearly constant organic δ13C values of −23‰ indicate that marine production dominates organic matter supply in both glacial and interglacial times during oxygen isotope stages 1 through 6 (0–140 ka) and 17 through 19 (660–790 ka). Increased organic carbon mass accumulation rates in isotope stages 2, 4, 6, and 18 record enhanced marine productivity during glacial maxima. Excursions of organic δ13C values to ca. −29‰ in portions of isotope stage 2 suggest that the local concentration of dissolved CO2 was occasionally elevated during the last glacial maximum, probably as a result of short periods of lowered sea-surface temperature. Dilution of carbonates by clastic continental sediment generally increases at this location during glacial maxima, but enhanced delivery of land-derived organic matter does not accompany the increased accumulation of clastic sediments.  相似文献   

16.
The geochemical cycling of barium was investigated in sediments of pockmarks of the northern Congo Fan, characterized by surface and subsurface gas hydrates, chemosynthetic fauna, and authigenic carbonates. Two gravity cores retrieved from the so-called Hydrate Hole and Worm Hole pockmarks were examined using high-resolution pore-water and solid-phase analyses. The results indicate that, although gas hydrates in the study area are stable with respect to pressure and temperature, they are and have been subject to dissolution due to methane-undersaturated pore waters. The process significantly driving dissolution is the anaerobic oxidation of methane (AOM) above the shallowest hydrate-bearing sediment layer. It is suggested that episodic seep events temporarily increase the upward flux of methane, and induce hydrate formation close to the sediment surface. AOM establishes at a sediment depth where the upward flux of methane from the uppermost hydrate layer counterbalances the downward flux of seawater sulfate. After seepage ceases, AOM continues to consume methane at the sulfate/methane transition (SMT) above the hydrates, thereby driving the progressive dissolution of the hydrates “from above”. As a result the SMT migrates downward, leaving behind enrichments of authigenic barite and carbonates that typically precipitate at this biogeochemical reaction front. Calculation of the time needed to produce the observed solid-phase barium enrichments above the present-day depths of the SMT served to track the net downward migration of the SMT and to estimate the total time of hydrate dissolution in the recovered sediments. Methane fluxes were higher, and the SMT was located closer to the sediment surface in the past at both sites. Active seepage and hydrate formation are inferred to have occurred only a few thousands of years ago at the Hydrate Hole site. By contrast, AOM-driven hydrate dissolution as a consequence of an overall net decrease in upward methane flux seems to have persisted for a considerably longer time at the Worm Hole site, amounting to a few tens of thousands of years.  相似文献   

17.
Very high-frequency marine multichannel seismic reflection data generated by small-volume air- or waterguns allow detailed, high-resolution studies of sedimentary structures of the order of one to few metres wavelength. The high-frequency content, however, requires (1) a very exact knowledge of the source and receiver positions, and (2) the development of data processing methods which take this exact geometry into account. Static corrections are crucial for the quality of very high-frequency stacked data because static shifts caused by variations of the source and streamer depths are of the order of half to one dominant wavelength, so that they can lead to destructive interference during stacking of CDP sorted traces. As common surface-consistent residual static correction methods developed for land seismic data require fixed shot and receiver locations two simple and fast techniques have been developed for marine seismic data with moving sources and receivers to correct such static shifts. The first method – called CDP static correction method – is based on a simultaneous recording of Parasound sediment echosounder and multichannel seismic reflection data. It compares the depth information derived from the first arrivals of both data sets to calculate static correction time shifts for each seismic channel relative to the Parasound water depths. The second method – called average static correction method – utilises the fact that the streamer depth is mainly controlled by bird units, which keep the streamer in a predefined depth at certain increments but do not prevent the streamer from being slightly buoyant in-between. In case of calm weather conditions these streamer bendings mainly contribute to the overall static time shifts, whereas depth variations of the source are negligible. Hence, mean static correction time shifts are calculated for each channel by averaging the depth values determined at each geophone group position for several subsequent shots. Application of both methods to data of a high-resolution seismic survey of channel-levee systems on the Bengal Fan shows that the quality of the stacked section can be improved significantly compared to stacking results achieved without preceding static corrections. The optimised records show sedimentary features in great detail, that are not visible without static corrections. Limitations only result from the sea floor topography. The CDP static correction method generally provides more coherent reflections than the average static correction method but can only be applied in areas with rather flat sea floor, where no diffraction hyperbolae occur. In contrast, the average static correction method can also be used in regions with rough morphology, but the coherency of reflections is slightly reduced compared to the results of the CDP static correction method.  相似文献   

18.
Submarine fans of different sizes, geometry, and petrology were built in the Marnoso-arenacea Basin, a migrating foredeep within an active continental margin. In an initial depositional stage, a well-developed basin plain received sediment from flows that by-passed restricted fan systems, now buried, located near the north end of an elongated basin. Minor fans grew near the steeper, tectonically deformed side of the basin. In the later stage, turbidite deposition was stopped in the former basin plain. Sediment sources and feeder channels shifted and fed fan lobes that prograded in a narrower trough and were distored (choked). The tectonic control on development of megasequence and sand bodies is stressed here in contrast with previous emphasis on “inner” or “autocyclic” mechanisms.  相似文献   

19.
Submarine fans of different sizes, geometry, and petrology were built in the Marnoso-arenacea Basin, a migrating foredeep within an active continental margin. In an initial depositional stage, a well-developed basin plain received sediment from flows that by-passed restricted fan systems, now buried, located near the north end of an elongated basin. Minor fans grew near the steeper, tectonically deformed side of the basin. In the later stage, turbidite deposition was stopped in the former basin plain. Sediment sources and feeder channels shifted and fed fan lobes that prograded in a narrower trough and were distored (choked). The tectonic control on development of megasequence and sand bodies is stressed here in contrast with previous emphasis on “inner” or “autocyclic” mechanisms. Margin setting represents fan and/or source area  相似文献   

20.
Authigenic carbonates were collected from methane seeps at Hydrate Hole at 3113 m water depth and Diapir Field at 2417 m water depth on the northern Congo deep-sea fan during RV Meteor cruise M56. The carbonate samples analyzed here are nodules, mainly composed of aragonite and high-Mg calcite. Abundant putative microbial carbonate rods and associated pyrite framboids were recognized within the carbonate matrix. The δ13C values of the Hydrate Hole carbonates range from ?62.5‰ to ?46.3‰ PDB, while the δ13C values of the Diapir Field carbonate are somewhat higher, ranging from ?40.7‰ to ?30.7‰ PDB, indicating that methane is the predominant carbon source at both locations. Relative enrichment of 18O (δ18O values as high as 5.2‰ PDB) are probably related to localized destabilization of gas hydrate. The total content of rare earth elements (REE) of 5% HNO3-treated solutions derived from carbonate samples varies from 1.6 ppm to 42.5 ppm. The shale-normalized REE patterns all display positive Ce anomalies (Ce/Ce* > 1.3), revealing that the carbonates precipitated under anoxic conditions. A sample from Hydrate Hole shows a concentric lamination, corresponding to fluctuations in δ13C values as well as trace elements contents. These fluctuations are presumed to reflect changes of seepage flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号