首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this project was to show that tissue back-pressure can be measured in vitro using a simple pneumatic model. A thorough literature study revealed 4 relevant papers all describing in vivo studies. One of these studies where the subcutaneous tissue back-pressure was determined in 11 patients was used as a reference for the present work. A pneumatic model capable of simulating the back-pressure and the diffusion of drug during subcutaneous injection was developed. The in vitro model was tested using the same type of pen injector as used in the reference study. Comparison of the results revealed that the measured pressure in the in vitro experiments was similar to the subcutaneous tissue back-pressure measured in vivo. G30 0.3 × 8.0 mm and G32 0.23/0.25 × 4.0 mm needles were used for the in vitro experiments, whereas a G31 0.25 × 6.0 mm needle was used for the in vivo experiments. This is one possible explanation of approximately 30 μL/s higher flow rates for the in vitro experiments compared to the in vivo experiments. The low-complexity model allows repeated measurements and provides a stable data output paving the way for measuring subcutaneous back-pressure in vitro.  相似文献   

2.
《药学学报(英文版)》2023,13(6):2765-2777
Oligoasthenospermia is the primary cause of infertility. However, there are still enormous challenges in the screening of critical candidates and targets of oligoasthenospermia owing to its complex mechanism. In this study, stem cell factor (SCF), c-kit, and transient receptor potential vanilloid 1 (TRPV1) biosensors were successfully established and applied to studying apoptosis and autophagy mechanisms. Interestingly, the detection limit reached 2.787 × 10−15 g/L, and the quantitative limit reached 1.0 × 10−13 g/L. Furthermore, biosensors were used to investigate the interplay between autophagy and apoptosis. Schisandrin A is an excellent candidate to form a system with c-kit similar to SCF/c-kit with a detection constant (KD) of 5.701 × 10−11 mol/L, whereas it had no affinity for SCF. In addition, it also inhibited autophagy in oligoasthenospermia through antagonizing TRPV1 with a KD of up to 4.181 × 10−10 mol/L. In addition, in vivo and in vitro experiments were highly consistent with the biosensor. In summary, high-potency schisandrin A and two potential targets were identified, through which schisandrin A could reverse the apoptosis caused by excessive autophagy during oligoasthenospermia. Our study provides promising insights into the discovery of effective compounds and potential targets via a well-established in vitro-in vivo strategy.  相似文献   

3.
This study evaluated the impact of poly(lactic-co-glycolic acid) (PLGA) microsphere formulations on in vitro release and in vivo plasma exposure of HsTX1[R14A], a potent inhibitor of the voltage-gated potassium channel Kv1.3, with potential to treat autoimmune conditions. Microspheres containing HsTX1[R14A] were prepared using different PLGA materials, including Resomer® RG502H, RG503H and PURASORB® PDLG 5004 (Purac). After assessing encapsulation efficiency and in vitro release, plasma concentrations of HsTX1[R14A] were quantified by LCMS/MS following subcutaneous administration of HsTX1[R14A]-loaded RG503H microspheres (15 mg/kg) or HsTX1[R14A] solution (4 mg/kg) to Sprague-Dawley rats. Microspheres prepared with Purac exhibited the greatest encapsulation efficiency (45.5 ± 2.4% (mean ± SD)) and RG502H the lowest (22.0 ± 6.4%). Release of HsTX1[R14A] was fastest in vitro for RG502H microspheres (maximum release at 31 days) and slowest for Purac (82 days). With a relatively rapid burst release of 20.0 ± 0.4% and a controlled release profile of up to 41 days, HsTX1[R14A]-loaded RG503H microspheres were selected for subcutaneous administration, resulting in detectable plasma concentrations for 11 days relative to 8 h following subcutaneous administration of HsTX1[R14A] solution. Therefore, subcutaneous administration of RG503H PLGA microspheres is a promising approach to be exploited for delivery of this immune modulator.  相似文献   

4.
This study aimed to investigate the liver microsomal inhibitory effects of silybin, silychristin, andrographolide, and curcumin by using morphine as an in vitro UGT2B7 probe substrate, and predict the magnitude of the herb-drug interaction arising from these herbal constituents' inhibition in vivo. Studies were performed in the incubation with and without bovine serum albumin (BSA). Andrographolide and curcumin showed a marked inhibition on morphine 3- and 6-glucuronidation with IC50 of 50&87 and 96&111 μM, respectively. In the presence of 2%BSA, andrographolide also showed a strong inhibition on morphine 3- and 6-glucuronidation (IC50 4.4&21.6 μM) whereas curcumin showed moderate inhibition (IC50 338&333 μM). In the absence and presence of 2%BSA, morphine 3- and 6-glucuronidation was moderately inhibited by silybin (IC50 583&862 and 1252&1421 μM, respectively), however was weakly inhibited by silychristin (IC50 3527&3504 and 1124&1530 μM, respectively). The Ki of andrographolide, curcumin and silybin on morphine 3- and 6-glucuronidation were 7.1&9.5, 72.7&65.2, and 224.5&159.7 μM, respectively, while the respective values generated from the system containing 2%BSA were 2.4&3.1, 96.4&108.8, and 366.3&394.5 μM. Using the in vitro and in vivo extrapolation approach, andrographolide was herbal component that may have had a potential interaction in vivo when it was co-administered with morphine.  相似文献   

5.
Delivering therapeutics to the brain using conventional dosage forms is always a challenge, thus the present study was aimed to formulate mucoadhesive nanoemulsion (MNE) of aripiprazole (ARP) for intranasal delivery to transport the drug directly to the brain. Therefore, a TPGS based ARP-MNE was formulated and optimized using the Box-Behnken statistical design. The improved in vitro release profile of the formulation was in agreement to enhanced ex vivo permeation through sheep mucous membranes with a maximum rate of permeation co-efficient (62.87  cm h?1 × 103) and flux (31.43  μg cm?2.h?1). The pharmacokinetic profile following single-dose administration showed the maximum concentration of drug in the brain (Cmax) of 15.19 ± 2.51  μg mL?1 and Tmax of 1 h in animals with ARP-MNE as compared to 10.57 ± 1.88  μg mL?1 and 1 h, and 2.52 ± 0.38  μg mL?1 and 3 h upon intranasal and intravenous administration of ARP-NE, respectively. Further, higher values of % drug targeting efficiency (96.9%) and % drug targeting potential (89.73%) of ARP-MNE through intranasal administration were investigated. The studies in Wistar rats showed no existence of extrapyramidal symptoms through the catalepsy test and forelimb retraction results. No ex vivo ciliotoxicity on nasal mucosa reflects the safety of the components and delivery tool. Further, findings on locomotor activity and hind-limb retraction test in ARP-MNE treated animals established its antipsychotic efficacy. Thus, it can be inferred that the developed ARP-MNE could effectively be explored as brain delivery cargo in the effective treatment of schizophrenia without producing any toxic manifestation.  相似文献   

6.
《药学学报(英文版)》2022,12(3):1514-1522
To explore the pharmacogenomic markers that affect the platinum-based chemotherapy response in non-small-cell lung carcinoma (NSCLC), we performed a two-cohort of genome-wide association studies (GWAS), including 34 for WES-based and 433 for microarray-based analyses, as well as two independent validation cohorts. After integrating the results of two studies, the genetic variations related to the platinum-based chemotherapy response were further determined by fine-mapping in 838 samples, and their potential functional impact were investigated by eQTL analysis and in vitro cell experiments. We found that a total of 68 variations were significant at P < 1 × 10?3 in cohort 1 discovery stage, of which 3 SNPs were verified in 262 independent samples. A total of 541 SNPs were significant at P < 1 × 10?4 in cohort 2 discovery stage, of which 8 SNPs were verified in 347 independent samples. Comparing the validated SNPs in two GWAS, ADCY1 gene was verified in both independent studies. The results of fine-mapping showed that the G allele carriers of ADCY1 rs2280496 and C allele carriers of rs189178649 were more likely to be resistant to platinum-based chemotherapy. In conclusion, our study found that rs2280496 and rs189178649 in ADCY1 gene were associated the sensitivity of platinum-based chemotherapy in NSCLC patients.  相似文献   

7.
Polymorphic cytochrome P450 3A5 (CYP3A5) expression contributes to individual differences in the pharmacokinetics of probe drugs. The identification of suitable in vivo CYP3A5 probes would benefit drug metabolism and drug interaction studies using chimeric mice with humanized liver. In this study, we investigated the pharmacokinetic profiles of T-1032, which is known as an in vitro CYP3A5 probe substrate, using humanized-liver mice. Substantial N-oxygenation of T-1032 was observed in hepatocytes from humans and from humanized-liver mice. Hepatocytes from the human donor genotyped as CYP3A513/13 (poor expressers) showed significantly lower T-1032 N-oxidation rates than those from donors harboring CYP3A511. After a single oral dose of T-1032 (1.0 mg/kg) in humanized-liver mice, the plasma levels of T-1032 N-oxide were higher in five mice with CYP3A511/17 hepatocytes than in four mice with CYP3A513/13 hepatocytes. The maximum concentrations of T-1032 N-oxide after oral administration of T-1032 in humanized-liver mice with CYP3A511/17 hepatocytes were twice (a significant difference) those from humanized-liver mice with CYP3A513/13 hepatocytes. These results suggest that polymorphic CYP3A5-dependent T-1032 N-oxidation was observed in humanized liver mice in vitro and in vivo. However, the contribution of CYP3A5 genotypes may have little or only limited effects on the overall pharmacokinetic profiles of T-1032 in vivo.  相似文献   

8.
The previous in vivo study revealed the carrier-mediated transport of riboflavin (vitamin B2) across the blood-retinal barrier (BRB). In the present study, the blood-to-retina supply of riboflavin across the outer BRB was assessed in RPE-J cells, a rat-derived in vitro cell model of the outer BRB that is formed by the retinal pigment epithelial cells. In the directional uptake analysis on collagen-coated Transwell® inserts, RPE-J cells showed higher basal-to-cell (B-to-C) uptake (22.8 μL/mg protein) of [3H]riboflavin than apical-to-cell (A-to-C) uptake (13.5 μL/mg protein). RPE-J cells showed concentration- and temperature-dependent uptake of [3H]riboflavin with a Km of 297 nM, suggesting the involvement of carrier-mediated process in the blood-to-retina transport of riboflavin across the outer BRB. In RPE-J cells, [3H]riboflavin uptake was affected under a K+-replacement condition while no effect was observed under a choline-replacement condition and at different pH values. Uptake of [3H]riboflavin by RPE-J cells was markedly reduced by riboflavin, flavin adenine dinucleotide (FAD), and lumichrome with no significant effect noted for other vitamins. The obtained results suggested the involvement of riboflavin transporters (SLC52A/RFVT) at the outer BRB, and this is supported by the expression and knockdown analyses of rRFVT2 (Slc52a2) and rRFVT3 (Slc52a3).  相似文献   

9.
In this work, two different in vitro gastric digestion models were used to evaluate the stability of a live attenuated rotavirus vaccine candidate (RV3-BB) under conditions designed to mimic oral delivery in infants. First, a forced-degradation model was established at low pH to assess the buffering capacity of formulation excipients and to screen for RV3-BB stabilizers. Second, a sequential-addition model was implemented to examine RV3-BB stability under conditions more representative of oral administration to infants. RV3-BB rapidly inactivated at < pH 5.0 (37 °C, 1 h) as measured by an infectivity RT-qPCR assay. Pre-neutralization with varying volumes of infant formula (Enfamil®) or antacid (Mylanta®) conferred partial to full protection of RV3-BB. Excipients with sufficient buffering capacity to minimize acidic pH inactivation of RV3-BB were identified (e.g., succinate, acetate, adipate), however, they concomitantly destabilized RV3-BB in accelerated storage stability studies. Both effects were concentration dependent, thus excipient optimization was required to design candidate RV3-BB formulations which minimize acid-induced viral inactivation during oral delivery while not destabilizing the vaccine during long-term 2–8 °C storage. Finally, a statistical Design -of-Experiments (DOE) study examining RV3-BB stability in the in vitro sequential-addition model identified key formulation parameters likely affecting RV3-BB stability during in vivo oral delivery.  相似文献   

10.
Wang X  Ying F  Chen Y  Han X 《Toxicon》2012,59(2):205-214
Microcystin (-LR) (MC-LR) is a broad distributed hepatotoxic microcystin produced by common freshwater phytoplankton species. Recently, its toxic effects on male reproductive system drew great attention. To investigate its reproductive toxicity and the underlying mechanism, BALB/c mice were exposed to MC-LR by intraperitoneal injection with different injection duration (1, 4, 7 and 14 days) and injection concentration (3.75, 7.5, 15 and 30 μg kg b.w.−1 day−1) as an in vivo test. For in vitro test, isolated mice Leydig cells were exposed to MC-LR at doses of 1, 10, 100, 250, 500 750 and 1000 nmol/L for 24 h. MC-LR did not induce significant changes in Kiss-1, GPR54, Gnrhr, Fshr or Lhr expression. It decreased the Gnrh expression in a dose- and duration-dependent manner. It increased and subsequently decreased the expressions of FSH, LH and testosterone. In in vivo test, MC-LR was not able to enter Leydig cells and had no cytotoxicity on Leydig cells. The results showed that MC-LR affected male mice serum hormones and mRNA expressions by damaging the hypothalamic-pituitary systems.  相似文献   

11.
《药学学报(英文版)》2020,10(7):1239-1248
A highly effective medicine is urgently required to cure coronavirus disease 2019 (COVID-19). For the purpose, we developed a molecular docking based webserver, namely D3Targets-2019-nCoV, with two functions, one is for predicting drug targets for drugs or active compounds observed from clinic or in vitro/in vivo studies, the other is for identifying lead compounds against potential drug targets via docking. This server has its unique features, (1) the potential target proteins and their different conformations involving in the whole process from virus infection to replication and release were included as many as possible; (2) all the potential ligand-binding sites with volume larger than 200 Å3 on a protein structure were identified for docking; (3) correlation information among some conformations or binding sites was annotated; (4) it is easy to be updated, and is accessible freely to public (https://www.d3pharma.com/D3Targets-2019-nCoV/index.php). Currently, the webserver contains 42 proteins [20 severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) encoded proteins and 22 human proteins involved in virus infection, replication and release] with 69 different conformations/structures and 557 potential ligand-binding pockets in total. With 6 examples, we demonstrated that the webserver should be useful to medicinal chemists, pharmacologists and clinicians for efficiently discovering or developing effective drugs against the SARS-CoV-2 to cure COVID-19.  相似文献   

12.
Tembotrione is a triketone herbicide, usually used for post-emergence weed control in corn. Currently, there is little or no published data on its genotoxicity to human cells either in vitro or in vivo. This study evaluated the impact of acute (4 and 24 h) exposure to low concentrations of tembotrione [corresponding to the acceptable daily intake (0.17 μg/mL), residential exposure level (0.002 μg/mL) and acceptable operator exposure level (0.0012 μg/mL)] on human hepatocellular carcinoma cell line HepG2, using biomarkers of oxidative stress, CCK-8 colorimetric assay for cell viability, alkaline comet assay, and cytokinesis-block micronucleus “cytome” assay. Tembotrione applied at concentrations likely to be encountered in occupational and residential exposures induced cytogenetic outcomes in non-target cells despite non-significant changes in the values of oxidative stress biomarkers. We assume that the observed effects were mainly the consequence of impaired metabolic pathways in HepG2 cells due to the inhibition of the enzyme 4-hydroxyphenyl-pyruvate-dioxygenase by tembotrione, which possibly caused a depletion of folate levels leading to excess formation of nuclear buds in the affected cells. Regardless of the fact that tembotrione was previously reported negative for mutations and chromosome aberrations in vitro, our findings call for more precaution in its use.  相似文献   

13.
Pretreatment with either pyrogallol, tropolone or 8-hydroxyquinoline enhanced markedly the mean stereotyped behavior scores after apomorphine treatment in the rat. Experiments in vitro, using rat liver or brain catechol-O-methyltransferase (COMT) preparations and 14C-methyl-S-adenosyl-l-methionine, demonstrated that apomorphine was methylated by this enzyme system. The apparent Km values for dopamine and apomorphine were 2.6 × 10?4 M and 1.4 × 10?3 M, respectively, for liver COMT. Pyrogallol and tropolone inhibited the methylation of apomorphine in vitro competitively when the apomorphine concentration was varied. These results suggest that methylation by COMT may represent an important metabolic pathway for the deactivation of apomorphine in vivo.  相似文献   

14.
Schizophrenia is a neurodevelopmental disorder which is expressed in the form of disturbed behaviour and abnormal mental functions. Patient's non-adherence to the medicine is the main cause of failure of drug therapy and increases incidence of relapses. Thus, for successful management of disease long acting parenteral formulations were developed. Aripiprazole was encapsulated in biocompatible polycaprolactone microsphere by o/w emulsion solvent-evaporation method in order to achieve sustained release of the drug for several weeks after single subcutaneous administration. They were optimised on the basis of various parameters such as physical appearance, particle size (49.4 μm–387.1 μm), encapsulation efficiency (70%–95%), percentage yield (33%–75%) and drug loading (25.9%–47.5%). The surface topography and sphericity of the microspheres was determined by scanning electron microscopy which revealed that the microspheres formed were spherical and non-porous in nature. The in vitro releases from the selected formulations were found to be 87% and 95% respectively after 45 days of dissolution. In vivo efficacy of optimised formulation showed significantly (p < 0.05) amelioration of various positive, negative and cognitive symptoms associated with schizophrenia and oxidative stress markers in ketamine-induced schizophrenia model in rats for 30 days.  相似文献   

15.
《药学学报(英文版)》2023,13(2):739-753
Hepatic cholesterol accumulation is an important contributor to hypercholesterolemia, which results in atherosclerosis and cardiovascular disease (CVD). ATP-citrate lyase (ACLY) is a key lipogenic enzyme that converts cytosolic citrate derived from tricarboxylic acid cycle (TCA cycle) to acetyl-CoA in the cytoplasm. Therefore, ACLY represents a link between mitochondria oxidative phosphorylation and cytosolic de novo lipogenesis. In this study, we developed the small molecule 326E with an enedioic acid structural moiety as a novel ACLY inhibitor, and its CoA-conjugated form 326E-CoA inhibited ACLY activity with an IC50 = 5.31 ± 1.2 μmol/L in vitro. 326E treatment reduced de novo lipogenesis, and increased cholesterol efflux in vitro and in vivo. 326E was rapidly absorbed after oral administration, exhibited a higher blood exposure than that of the approved ACLY inhibitor bempedoic acid (BA) used for hypercholesterolemia. Chronic 326E treatment in hamsters and rhesus monkeys resulted in remarkable improvement of hyperlipidemia. Once daily oral administration of 326E for 24 weeks prevented the occurrence of atherosclerosis in ApoE?/? mice to a greater extent than that of BA treatment. Taken together, our data suggest that inhibition of ACLY by 326E represents a promising strategy for the treatment of hypercholesterolemia.  相似文献   

16.
Adeno‐associated virus (AAV) has become one of the most promising gene transfer tools for gene therapy. This work aims to evaluate tropism, gene transfer efficiency and safety of AAV9 vectors produced with recombinant baculovirus (rBac)‐based system. AAV9‐CMV‐GFP and AAV9‐CBA‐GFP were produced using a rBac system, 1 × 1011 particles of each vectors were administered intravenously (i.v.) into mice and animals were killed at 1, 2, 3, 4, 5 and 8 weeks after administration. The GFP expression in different organs was analyzed by fluorescence imaging and Western blot. Viral genomic quantities were measured using qPCR. In vitro transduction efficiency of AAV9 vectors in primary cardiomyocytes and hepatocytes was determined by flow cytometry. Toxicity of AAV9 vectors was evaluated by determining certain cardiac and liver injury biomarkers and renal function test in vivo and TUNEL analysis in vitro. The data showed that AAV9 viral particles packaged by the rBac system were fully functional in vivo and in vitro. The CMV promoter predominantly induced higher cardiac GFP transgene expression and DNA copy numbers while the CBA promoter resulted in robust GFP expression and high vector DNA copy numbers in mouse liver, both in a time‐dependent increased manner. Such distinct preferential effects were also observed in the heart and liver as early as 3 and 5 days after co‐infection. Both the AAV9‐CMV and AAV9‐CBA viral packages did not induce heart, liver and renal damage and cell apoptosis. These results indicated that AAV9‐CMV can efficiently and safely direct cardiac gene transfer, whereas AAV9‐CBA is preferential for liver gene delivery.  相似文献   

17.
《药学学报(英文版)》2020,10(2):262-275
To develop fusion protein of a GnRH Fc fragment and the integrin targeting AP25 antitumor peptide for GnRH receptor-expressing cancer therapy. The LMRAP fusion protein was constructed. A transwell invasion assay was performed. The gene mRNA and protein levels of GnRHR-I, α5β1, and αvβ3 in different cancer cell lines were assessed. Cell proliferation was measured using a cell counting kit-8. An antagonist assay was performed on GnRH receptors. Anti-tumor activity was evaluated with a mouse xenograft tumor model. Immunohistochemistry (IHC) was applied to detect CD31 and CD34 expressions. Pharmacokinetic characteristics were determined with an indirect competition ELISA. The developed bifunctional fusion protein LMRAP not only inhibited HUVEC invasion, but also inhibited proliferation of GnRHR-I, α5β1, and αvβ3 high expression cancer cells. The IC50 for LMRAP in the GnRH receptor was 6.235 × 10−4 mol/L. LMRAP significantly inhibited human prostate cancer cell line 22RV1 proliferation in vivo and in vitro. LMRAP significantly inhibited CD31 and CD34 expressions. The elimination half-life of the fusion protein LMRAP was 33 h in rats. The fusion protein made of a GnRH Fc fragment and the integrin targeting AP25 peptide retained the bifunctional biological activity of GnRHR blocking, angiogenesis inhibition, prolonged half-life and good tolerance.  相似文献   

18.
This study was conducted to estimate in vivo inhibition constant (Ki) of ketoconazole on renal P-glycoprotein (P-gp) using human drug-drug interaction (DDI) study result of fesoterodine and ketoconazole. Fesoterodine is a prodrug which is extensively hydrolyzed by non-specific esterases to the active metabolite 5-hydroxymethyl tolterodine (5-HMT). 5-HMT is then further metabolized via Cytochrome P450 (CYP) 2D6 and CYP3A4. It is reported that 5-HMT is a substrate of P-gp whereas fesoterodine is not. Renal clearance of 5-HMT is approximately two-times greater than renal glomerular filtration rate. This suggests the possibility that renal clearance of 5-HMT involves secretion by P-gp. Utilizing the available pharmacokinetic characteristics of fesoterodine and 5-HMT, we estimated in vivo Ki of ketoconazole on P-gp at kidney based on DDI study data using physiologically-based pharmacokinetic approach. The estimated in vivo Ki of ketoconazole for hepatic CYP3A4 (6.64 ng/mL) was consistent with the reported values. The in vivo Ki of ketoconazole for renal P-gp was successfully estimated as 2.27 ng/mL, which was notably lower than reported in vitro 50% inhibitory concentration (IC50) values ranged 223–2440 ng/mL due to different condition between in vitro and in vivo.  相似文献   

19.
The use of silicone as a primary polymer in topical semisolid pharmaceutical formulations is infrequent. Recent development of novel silicone materials provides an opportunity to investigate their drug delivery efficiencies. In this study, an anhydrous semisolid formulation was prepared using a novel cross-linked silicone polymer network swollen in isododecane. Similar formulations were prepared using petrolatum, an acrylic, or a cellulose polymer. All formulations contained 5% ibuprofen (IBP). In vitro permeability was evaluated for all formulations and a commercial product using human cadaver epidermis. The silicone formulation delivered IBP more efficiently than all other formulations in terms of flux, cumulative amount, and percent drug release. The silicone formulation showed the maximum flux of 85.9 μg.cm−2.h−1 and a cumulative IBP release of 261.6 μg in 8 h, whereas the benchmark showed 20.1 μg.cm−2.h−1 and 30.9 μg, respectively. An in vivo study conducted on rats showed calculated blood AUCs of 59.2 and 17.6 μg.h/g (p < 0.003) for the silicone formulation and the benchmark, respectively. The IBP in excised rat skin was 264 ± 59 μg/g for the silicone formulation and 102 ± 5 μg/g for the benchmark. The results obtained from the in vitro and in vivo studies demonstrate efficient topical IBP delivery by the silicone formulation.  相似文献   

20.
The aim of the present study was to develop tamsulosin hydrochloride sustained-release pellets using two-layered membrane techniques. Centrifugal granulator and fluidized-bed coater were employed to prepare drug-loaded pellets and to employ two-layered membrane coating respectively. The prepared pellets were evaluated for physicochemical characterization, subjected to differential scanning calorimetry (DSC) and in vitro release of different pH. Different release models and scanning electron microscopy (SEM) were utilized to analyze the release mechanism of Harnual® and home-made pellets. By comparing the dissolution profiles, the ratio and coating weight gain of Eudragit® NE30D and Eudragit® L30D55 which constitute the inside membrane were identified as 18:1 and 10%–11%. The coating amount of outside membrane containing Eudragit® L30D55 was determined to be 0.8%. The similarity factors (f2) of home-made capsule and commercially available product (Harnual®) were above 50 in different dissolution media. DSC studies confirmed that drug and excipients had good compatibility and SEM photographs showed the similarities and differences of coating surface between Harnual® and self-made pellets before and after dissolution. According to Ritger-Peppas model, the two dosage form had different release mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号