首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
[10D-3H; 3-14C]- and [10L-3H; 3-14C]arachidonic acids were incubated with human polymorphonuclear leukocytes and with human platelets. Leukotriene B4 and 5(S),12(S)-dihydroxy-6trans,8cis,10trans,14-cis-eicosatetraenoic acid (5,12-DHETE) were isolated and the 3H/14C ratios determined. It could be concluded that the 10D (pro-R)-hydrogen is eliminated in the conversion of 5(S)-hydroperoxy-6trans,8cis,11cis,14cis-eicosatetraenoic acid into leukotriene A4 whereas in the conversion of arachidonic acid into 5,12-DHETE the 10L (pro-S)-hydrogen is lost. Incubation of the doubly labeled arachidonic acids with human platelets confirmed and extended previous data on the stereochemistry of the hydrogen removal from C-10 during the conversion into 12(S)-hydroperoxy-5cis,8cis,10trans,14cis-eicosatetraenoic acid, i.e., the 10L (pro-S)-hydrogen is eliminated and the 10D (pro-R)-hydrogen retained.  相似文献   

2.
Keresztes A  Tóth G  Fülöp F  Szucs M 《Peptides》2006,27(12):3315-3321
Previously, we have shown that substitution of Pro2 for cis-2-aminocyclopentanecarboxylic acid, ACPC in endomorphin-2 results in an analogue with greatly augmented proteolytic stability, high μ-opioid receptor affinity and selectivity. We now report the synthesis and biochemical characterization of [3H][(1S,2R)ACPC2]endomorphin-2 with a specific activity of 1.41 TBq/mmol (38.17 Ci/mmol). Specific binding of [3H][(1S,2R)ACPC2]endomorphin-2 was saturable and of high affinity with an equilibrium dissociation constant, Kd = 1.80 ± 0.21 nM and receptor density, Bmax = 345 ± 27 fmol × mg protein−1 at 25 °C in rat brain membranes. Similar affinity values were obtained in kinetic and displacement assays. Both Na+ and Gpp(NH)p decreased the affinity proving the agonist character of the radioligand. [3H][(1S,2R)ACPC2]endomorphin-2 retained the μ-specificity of the parent peptide. The new radioligand will be a useful tool to map the topographical requirements of μ-opioid peptide binding due to its high affinity, selectivity and enzymatic stability.  相似文献   

3.
The enantioselective microbial reduction of 6-oxo-8-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-8-azaspiro[4.5]decane-7,9-dione (1) to either of the corresponding (S)- and (R)-6-hydroxy-8-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-8-azaspiro[4.5]decane-7,9-diones (2 and 3, respectively) is described. The NADP+-dependent (R)-reductase (RHBR) which catalyzes the reduction of 6-ketobuspirone (1) to (R)-6-hydroxybuspirone (3) was purified to homogeneity from cell extracts of Hansenula polymorpha SC 13845. The subunit molecular weight of the enzyme is 35,000 kDa based on sodium dodecyl sulfate gel electrophoresis and the molecular weight of the enzyme is 37,000 kDa as estimated by gel filtration chromatography. (R)-reductase from H. polymorpha was cloned and expressed in Escherichia coli. To regenerate the cofactor NADPH required for reduction we have cloned and expressed the glucose-6-phosphate dehydrogenase gene from Saccharomyces cerevisiae in E. coli. The NAD+-dependent (S)-reductase (SHBR) which catalyzes the reduction of 6-ketobuspirone (1) to (S)-6-hydroxybuspirone (2) was purified to homogeneity from cell extracts of Pseudomonas putida SC 16269. The subunit molecular weight of the enzyme is 25,000 kDa based on sodium dodecyl sulfate gel electrophoresis. The (S)-reductase from P. putida was cloned and expressed in E. coli. To regenerate the cofactor NADH required for reduction we have cloned and expressed the formate dehydrogenase gene from Pichia pastoris in E. coli. Recombinant E. coli expressing (S)-reductase and (R)-reductase catalyzed the reduction of 1 to (S)-6-hyroxybuspirone (2) and (R)-6-hyroxybuspirone (3), respectively, in >98% yield and >99.9% e.e.  相似文献   

4.
Alanine racemase of Bacillus stearothermophilus catalyzes transamination as a side reaction. Stereospecificity for the hydrogen abstraction from C-4′ of pyridoxamine 5′-phosphate occurring in the latter half transamination was examined. Both apo-wild-type and apo-fragmentary alanine racemases abstracted approximately 20 and 80% of tritium from the stereospecifically-labeled (4′S)- and (4′R)-[4′-3H]PMP, respectively, in the presence of pyruvate. Alanine racemase catalyzes the abstraction of both 4′S- and 4′R-hydrogen like amino acid racemase with broad substrate specificity. However, R-isomer preference is a characteristic property of alanine racemase.  相似文献   

5.
The lipase-catalyzed production of optically active (S)-flurbiprofen was carried out in a dispersion reaction-system induced by chiral succinyl β-cyclodextrin (suβ-CD). The optimal reaction conditions were 500 mM (R,S)-flurbiprofen ethyl ester ((R,S)-FEE), 600 units of Candida rugosa lipase per 1 mmol of (R,S)-FEE, and 1000 mM suβ-CD at 37 °C for 72 h. An extremely high enantiomeric excess of 0.98 and conversion yield of 0.48 were achieved in the dispersed aqueous phase reaction system containing chiral suβ-CD added as a dispenser and chiral selector. The inclusion complex formability of the immiscible substrate (S)- and (R)-form of FEE with suβ-CD was compared using a phase-solubility diagram, DSC, and 1H NMR. (S)-Isomer formed a more stable and selective inclusion complex with chiral suβ-CD. It was hydrolyzed much more selectively by lipase from C. rugosa, due to the selective structural modification through inclusion complexation with chiral suβ-CD.  相似文献   

6.
The ester cleavage of R- and S-isomers N-CBZ-leucine p-nitrophenyl ester intermolecularly catalyzed by R- (a) and S-stereoisomers (b) of the Pd(II) metallacycle [Pd(C6H4C*HMeNMe2)Cl(py)] (3) follows the rate expression kobs = ko + kcat [3], where the rate constants kcat equal 25.8 ± 0.4 and 7.6 ± 0.5 dm3 mol−1 s−1 for the S- and R-ester, respectively, in the case of 3a, but are 5.7 ± 0.6 and 26.7 ± 0.5 dm3 mol−1 s−1 for the S- and R-ester, respectively, in the case of 3b (pH 6.23 and 25°C). Thus, the best catalysis occurs when the asymmetric carbons of the leucine ester and Pd(II) complex are R and S, or S and R configured, respectively. Molecular modeling suggests that the stereoselection results from the spatial interaction between the CH2CHMe2 radical of the ester and the -methyl group of 3. A hydrophobic/stacking contact between the leaving 4-nitrophenolate and the coordinated pyridine also seems to play a role. Less efficient intramolecular enantioselection was observed for the hydrolysis of N-t-BOC-S-metthionine p-nitrophenyl ester with R- and S-enantiomers of [Pd(C6H4C*HMeNMe2)Cl] coordinated to sulfur.  相似文献   

7.
Purified lipase from Mucor miehei (MML) has been covalently immobilized on different epoxy resins (standard hydrophobic epoxy resins, epoxy-ethylenediamine, epoxy-iminodiacetic acid, epoxy-copper chelates) and adsorbed via interfacial activation on octadecyl-Sepabeads support (fully coated with very hydrophobic octadecyl groups). These immobilized enzyme preparations were used under slightly different conditions (temperature ranging from 4 to 25 °C and pH values from 5 to 7) in the hydrolytic resolution of (R,S)-2-butyroyl-2-phenylacetic acid.

Different catalytic properties (activity, specificity, enantioselectivity) were found depending on the particular support used. For example, the epoxy-iminodiacetic acid-Sepabeads gave the most active preparation at pH 7 while, at pH 5, the ethylenediamine-Sepabeads was superior.

More interestingly, the enantiomeric ratio (E) also depends strongly on the immobilized preparation and the conditions employed. Thus, the octadecyl-MML preparation was the only immobilized enzyme derivative which exhibited enantioselectivity towards R isomer (with E values ranging from 5 at 4 °C and pH 7 to 1.2 at pH 5 and 25 °C).

The other immobilized preparations, in contrast, were S selective. Immobilization on iminodiacetic acid-Sepabeads afforded the catalyst with the highest enantioselectivity (E=59 under optimum conditions).  相似文献   


8.
Enantioselective reductions of p-X-C6H4C(O)CH2N3 (X = H, Cl, Br, CH3, OCH3) mediated by Rhodotorula glutinis and Geotrichum candidum afforded the corresponding alcohols with complementary R and S configurations, respectively, in excellent yield and enantiomeric excesses. The obtained (R)-azidoalcohols are important starting materials for preparation of natural products and valuable pharmaceutical compounds such as (R)-Tembamide and (R)-Aegeline.  相似文献   

9.
The heterocyclic analogue of (S)-glutamic acid, (S)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid [(S)-AMPA] is a potent and selective AMPA receptor agonist, whereas the enantiomeric compound, (R)-AMPA, is virtually inactive. We have previously characterized (RS)-2-amino-3-(3-hydroxy-5-phenyl-4-isoxazolyl)propionic acid [(RS)-APPA] as a partial AMPA receptor agonist showing about 60% of the efficacy of (RS)-AMPA. This partial agonism produced by (RS)-APPA is, however, only apparent, since resolution of (RS)-APPA has now been shown to provide the full AMPA receptor agonist, (S)-APPA, whereas (R)-APPA is a acid (non-NMDA) receptor antagonist showing preferential AMPA blocking effects. In agreement with classical theories for competitive interaction between agonists and antagonists, the efficacy of depolarizations produced by (S)-APPA in the rat cortical wedge preparation was shown to be progressively reduced with increasing molar ratios of (R)-APPA/(S)-APPA. These compounds and the competitive antagonists (RS)-2-amino-3-(3-carboxymethoxy-5-methyl-4-isoxazolyl)propionic acid [(RS)-AMOA], 6-cyano-7-nitroquinoxalin-2,3-dione (CNQX) and 6-nitro-7-sulfamoylbenzo(f)quinoxalin-2,3-dione (NBQX) were also tested in [3H]AMPA and [3H]CNQX binding systems, the latter ligand being used in the absence or presence of thiocyanate ions. On the basis of these studies it is suggested that (RS)-AMPA and the AMPA agonist (S)-APPA interact with a high-affinity receptor conformation, whereas the competitive antagonists (RS)-AMOA and (R)-APPA, derived from these agonists, preferentially bind to a low-affinity AMPA receptor conformation. The competitive antagonists, CNQX and NBQX which are structurally unrelated to (RS)-AMPA or (RS)-APPA, do not seem to discriminate between these two AMPA receptor conformations. The modified [3H]CNQX binding assay containing thiocyanate ions was shown to provide receptor affinity data for AMPA receptor agonists as well as antagonists, which correlate with the potencies of these compounds in the cortical wedge preparation. Using autoradiographic techniques, (S)- and (R)-APPA were shown to exhibit significantly different absolute potencies as inhibitors of [3H]AMPA binding in a number of regions of the rat brain.  相似文献   

10.
To prepare labeled precursors for biosynthetic studies, methods for the specific introduction of tritium and deuterium into the reducing and the terminal glucose unit of maltotriose were developed. Thus [6″-3H]- and (6″-2H)-maltotriose (17) and (18) were prepared via selective methoxytritylation, deprotection and subsequent modified Pfitzner-Moffatt oxidation, followed by reduction with sodium borotritiide or sodium borodeuteride, respectively. A simple two step procedure utilizing the Lobry de Bruyn/van Ekenstein transformation gave (2-2H)maltotriose (20).  相似文献   

11.
Optically active (S)-flurbiprofen was produced fed-batch-wisely in a lipase-catalyzed dispersed aqueous phase reaction system induced by succinyl β-cyclodextrin (suβ-CD). A highly concentrated 480 mM (S)-flurbiprofen, corresponding to 117.0 g/l, with an enantiomeric excess of 0.98 and conversion yield of 0.48 was obtained. (S)-Flurbiprofen produced in an inclusion complex form with suβ-CD was extractively purified using three-step procedures: decomplexation of (S)-flurbiprofen and residual (R)-flurbiprofen ethyl ester ((R)-FEE) using the ethyl acetate, dissolution of (S)-flurbiprofen from (R)-FEE using a sodium bicarbonate solution, and selective precipitation of (S)-flurbiprofen using 2-propanol. Consequently, an extremely high concentration of 420 mM (S)-flurbiprofen with an optical purity higher than 98% was recovered after purification.  相似文献   

12.
The quantitative carotenoid composition of the red flower petals of Adonis annua is reported. Optically pure (3S, 3′S)-astaxanthin occurs both as a diester (64% of total carotenoid) and as a monoester (11%). The optical purity was determined by hydrolysis of the natural esters in the absence of oxygen and subsequent HPLC analysis of the paren -ketol esterified with (−)-camphanic acid. All non-animal sources hitherto examined synthesize pure 3S,3′S- or 3R,3′R-isomers of astaxanthin, whereas marine animal sources contain mixtures of all three optical isomers, including the meso form.  相似文献   

13.
Synthesis of lobucavir prodrug, L-valine, [(1S,2R,3R)-3-(2-amino-1,6-dihydro-6-oxo-9H-purin-9-yl)-2-(hydroxymethyl)cyclobutyl]methyl ester monohydrochloride (BMS 233866), requires regioselective coupling of one of the two hydroxyl groups of lobucavir (BMS 180194) with valine. Either hydroxyl group of lobucavir could be selectively aminoacylated with valine by using enzymatic reactions. N-[(Phenylmethoxy)carbonyl]-L-valine, [(1R,2R,4S)-2-(2-amino-6-oxo-1H-purin-9-yl)-4-(hydroxymethyl)cyclobutyl]methyl ester (3, 82.5% yield), was obtained by selective hydrolysis of N,N′-bis[(phenylmethoxy)carbonyl]bis[L-valine], O,O′-[(1S,2R,3R)-3-(2-amino-6-oxo-1H-purin-9-yl)cyclobuta-1,2-diyl]methyl ester (1) with lipase M, and L-valine, [(1R,2R,4S)-2-(2-amino-1,6-dihydro-6-oxo-9H-purin-9-yl)-4-(hydroxymethyl)cyclobutyl]methyl ester monohydrochloride (4, 87% yield) was obtained by hydrolysis of bis[L-valine], O,O′-[(1S,2R,3R)-3-(2-amino-6-oxo-1H-purin-9-yl)cyclobuta-1,2-diyl]methyl ester, dihydrochloride (2), with lipase from Candida cylindracea. The final intermediate for lobucavir prodrug, N-[(phenylmethoxy)carbonyl]-L-valine, [(1S,2R,4R)-3-(2-amino-6-oxo-1H-purin-9-yl)-2-(hydroxymethyl)cyclobutyl]methyl ester (5), could be obtained by transesterification of lobucavir using ChiroCLEC™ BL (61% yield), or more selectively by using immobilized lipase from Pseudomonas cepacia (84% yield).  相似文献   

14.
Lipases from Candida rugosa, Candida antartica B and Carica papaya are employed as the biocatalyst for the hydrolytic resolution of methyl 2-fluoro-2-arylpropionates in water-saturated isooctane, in which excellent to good enantioselectivity without the formation of byproducts is obtained for the papaya lipase when using (R,S)-2-fluoronaproxen methyl ester (1) and methyl (R,S)-2-fluoro-2-(4-methoxyphenyl)propionate (2), but not methyl (R,S)-2-fluoro-2-(naphth-1-yl)propionate (3) as the substrates. The thermodynamic analysis indicates that the enantiomer discrimination for the papaya lipase is driven by the difference in activation enthalpy for compound 1, 2 or (R,S)-naproxen methyl ester (4). The kinetic analysis also demonstrates that in comparison with (S)-4, the insertion of the 2-fluorine moiety in (R)-1 has increased k2, but not Km, and consequently the lipase activity.  相似文献   

15.
Rhodococcus sp. AJ270 is a useful biocatalyst for the synthesis of some enantiopure S-(+)-2-aryl-3-methylbutyric acids and R-(+)-2-aryl-3-methylbutyramides from the hydrolysis of 2-aryl-3-methylbutyronitriles under mild conditions. The nitrile-hydrolyzing enzymes involved in this novel microorganism are very sensitive to the steric effect of the para-substituent on the aromatic ring. While the nitrile hydratase displays a low S-enantioselectivity against nitriles, the amidase has a strict S-enantioselectivity against 2-aryl-3-methylbutyramides.  相似文献   

16.
We have developed the economical and convenient biocatalytic process for the preparation of (R)-1,3-butanediol (BDO) by stereo-specific microbial oxido-reduction on an industrial scale. (R)-1,3-BDO is an important chiral synthon for the synthesis of various optically active compounds such as azetidinone derivatives lead to penem and carbapenem antibiotics.

We studied on two approaches to obtain (R)-1,3-BDO. The first approach was based on enzyme-catalyzed asymmetric reduction of 4-hydroxy-2-butanone; the second approach was based on enantio-selective oxidation of the undesired (S)-1,3-BDO in the racemate. As a result of screening for yeasts, fungi and bacteria, the enzymatic resolution of racemic 1,3-BDO by the Candida parapsilosis IFO 1396, which showed differential rates of oxidation for two enantiomers, was found to be the most practical process to produce (R)-1,3-BDO with high enantiomeric excess and yield.

We characterized the (S)-1,3-BDO dehydrogenase purified from a cell-free extract of C. parapsilosis. This enzyme was found to be a novel secondary alcohol dehydrogenase (CpSADH). We have attempted to clone and characterize the gene encoding CpSADH and express it in Escherichia coli. The CpSADH activity of a recombinant E. coli strain was more than two times higher than that of C. parapsilosis. The production yield of (R)-1,3-BDO from the racemate increased by using the recombinant E. coli strain. Interestingly, we found that the recombinant E. coli strain catalyzed the reduction of ethyl 4-chloro-3-oxo-butanoate to ethyl (R)-4-chloro-3-hyroxy-butanoate with high enantiomeric excess.  相似文献   


17.
The oxidation of [1-14C]linoleate in isolated microsomes from pea leaves was found to be stimulated by NADPH addition. The formation of one of the main metabolites, 12-hydroxy-9(Z)-dodecenoic acid is particularly NADPH-dependent. The predominant products in the absence of NADPH were hydroperoxides and in the presence of NADPH, 12-hydroxy-9(Z)-dodecenoic acid. Exogenous [1-14C]-13-hydroperoxy-9(Z), 11(E)-octadecadieoic acid and [1-14C]-12-oxo-9(Z)-dodecenoic acidwere the efficient precursors of 12-hydroxy9(Z)-dodecenoic acid. It was concluded that 12-hydroxy-9(Z)-dodecenoic acid is formed by NADPH-dependent enzymatic reduction of 12oxo-9(Z)-dodecenoic acid. The observed inhibition of linoleate oxidation in isolated microsomes by CO and metryapone suggests the involvement of cytochrome P-450 in the reaction. The relative contribution of lipoxygenase and monooxygenase activity to linoleate oxidation in microsomes is discussed.  相似文献   

18.
Cobalt(III) complexes with a thiolate or thioether ligand, t-[Co(mp)(tren)]+ (2), t-[Co(mtp)(tren)]2+ (1Me) and t-[Co(mta)(tren)]2+ (2Me), (mp = 3-mercaptopropionate, MA = 3-(methylthio)propionate and MTA = 2-(methylthio)acetate) have been prepared in aqueous solutions. The crystal structures of 1, 2, 1Me and 2Me were determined by X-ray diffraction methods. The crystal data are as follows, t-[Co(mp)(tren)]ClO4 (1CIO4): monoclinic, P21/n, A = 10.877(8), B = 11.570(4), c = 12.173(7) Å, β = 92.20(5)°, V = 1531(1) Å3, Z = 4 and R = 0.060; t-[Co(ma)(tren)]Cl·3H2O (2Cl·3H2O): monoclinic, P21/n, a = 7.7688(8), B = 27.128(2), C = 7.858(1) Å, β = 100.63(1)°, V = 1627.7(3) Å3, Z = 4 and R = 0.066; (+)465CD-t-[Co(mtp)(tren)](ClO4)2 ((+)465CD-1Me(ClO4)2): orthorhombic, P212121, A = 10.6610(7), B = 11.746(1), C = 15.555(1) Å, V = 1947.9(3) Å3, Z = 4 and R = 0.068; (+)465CD-t-[Co(mta)(tren)](ClO4)2 ((+)465CD-2Me(ClO4)2): orthorhombic, P212121, a = 10.564(1), B = 11.375(1), C = 15.434(2) Å, V = 1854.7(4) Å3, Z = 4 and R = 0.047. All central Co(III) atoms have approximately octahedral geometry, coordinated by four N, one O, and one S atoms. All of the complexes are only isomer, of which the sulfur atom in the didentate-O,S ligands are located at the trans position to the tertiary amine nitrogen atom of tren. 1 and 1Me contain six-membered chelate ring, and 2 and 2Me do five-membered chelate ring in the didentate ligand. The chirality of the asymmetric sulfur donor atom in (+)465CD-1Me is the S configuration and that in (+)465CD-2Me is the R one. The 1H NMR, 13C NMR and electronic absorption spectral behaviors and electrochemical properties of the present complexes are discussed in relation to their stereochemistries.  相似文献   

19.
Biotransformation of [1-13C] labelled hexadecane, hexadecanol and hexadecanoic acid have been investigated using the yeast Torulopsis apicola. The yeast produces a microcrystalline mixture of two glycolipids, the lipophilic moiety of which consists of ω- or (ω-l)-hydroxylated hexadecanoic acid. Biosynthesis of these glycolipids takes place via hydroxylation of hexadecane, oxidation to hexadecanoic acid and ω or (ω-l)-hydroxylation of hexadecanoic acid. Feeding the cell cultures with a mixture of hexadecane and [1-13C] labelled hexadecane derivatives one observes 13C enrichment ratios which indicate that neither of the biohydroxylation or oxidation steps are rate limiting in the formation of the glycolipids, furthermore, two different monooxygenase systems appear to be involved in hydroxylation of hexadecane and hexadecanoic acid.  相似文献   

20.
Protein phosphorylation in vitro was investigated in guard cells from Vicia faba. A number of proteins with apparent molecular masses of 72, 67, 57, 52, 49, 44, 37, and 26 kDa were phosphorylated when guard-cell extract was incubated with [γ-32P]ATP under Ca2+-free conditions. In the presence of Ca2+ at 1 μM, several proteins with apparent molecular masses of 125, 83, 41, 31, and 25 kDa were newly phosphorylated. These Ca2+-dependent protein phosphorylations were suppressed by (8R*,9S*,11S*)-(−)-9-hydroxy-9-methoxycarbonyl-8-methyl-2,3,9,10-tetrahydro-8,11-epoxy-1H,8H,11H-2,7b,11a- triazadibenzo[a,g]cycloocta[cde]trinden-1-one (K-252a), a wide-range inhibitor of protein kinases, suggesting that the protein phosphorylations were mediated by protein kinases. Several proteins were phosphorylated in vitro in mesophyll extract from Vicia. In contrast to guard cells, there was no detectable Ca2+-dependent protein phosphorylation in mesophyll cells. 1-(5-Indonaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine (ML-7), an inhibitor of myosin light chain kinase (MLCK), and an antagonist of calmodulin (CaM), N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), inhibited Ca2+-dependent phosphorylation of 41- and 25-kDa proteins in guard cells. Fractionation experiments revealed that the Ca2+-dependent phosphorylated proteins with molecular masses of 41 and 25 kDa were present in the mitochondria, and the 125- and 31-kDa proteins in the cytosol. These results suggest that Ca2+-dependent protein phosphorylation occurs markedly in guard cells, and that Ca2+-dependent phosphorylation of 41- and 25-kDa proteins may be catalyzed by MLCK or MLCK-like protein kinase in guard cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号