首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A CFD model for the simulation of gas‐liquid bubbly flow is developed. In the model, the multi‐phase flow is simulated by an Eulerian‐Eulerian approach using several phase definitions (from 3 to 10). The bubble size distribution is simulated by a solution of the discretized population balance equation with coalescence and break‐up of bubbles. The number of the discretized population balance equations in the model is larger than the number of the phases used in the flow field simulation. A desired accuracy in the simulation can be achieved by choosing a suitable number of phases as a compromise between accuracy and computational cost. With this model, more detailed flow hydrodynamics and bubble size distribution can be obtained. The model was tested with different operating conditions and for different numbers of dispersed phases in a bubble column, and was verified with a bubble size distribution obtained experimentally.  相似文献   

2.
The two‐phase flow structure of an air‐water, bubbly, upward flow in a 20 cm diameter pipe is presented with particular emphasis on the local interfacial area concentration. The radial distribution of void fraction, bubble velocity, bubble size, bubble frequency, and interfacial area concentration were measured using a local dual‐optical probe. The experimental results showed that the saddle‐type distribution of void fraction and interfacial area concentration, which are common for bubbly flow in small diameter pipes, only appeared in the present experiments under conditions of very low area‐averaged void fraction (<?> < 0.04). The values for the interfacial area concentration were higher in large diameter pipes when compared with data obtained under the same flow conditions in small pipes. The area‐averaged void fraction data were correlated using the drift‐flux model.  相似文献   

3.
A new invasive sensing probe for the measurement of local phase holdups in two‐ and three‐phase reactors is described. The local gas and solids holdups in a bubble column with a volume of V = 2 m3 at varying operating conditions (gas velocity, sparger design, solids content and density) are measured by means of differential pressure measurement in combination with either time domain reflectometry or electrical conductivity measurement. The phase distribution profiles at two‐ and three‐phase operating conditions are described. The influence of the sparger design on the shape of these profiles, the influence of the solid phase on the gas distribution, the solids distribution and the gas‐stow effect above the sparger because of a dense particle layer are capable of experimental proof for the first time.  相似文献   

4.
A double-sensor probe was used to measure local interfacial parameters of a gas-liquid bubbly flow in a horizontal tube. The parameters included void fraction, interfacial concentration, bubble size distribution, bubble frequency and bubble interface velocity. The authors paid special attention to the probe design and construction for minimizing measurement errors. Measures were also taken in the design of sensor ends for preventing corrosions in the flow. This is an effort to improve the current double-sensor probe technique to meet the ever-increasing needs to local varameter measurements in gas-liquid two-phase flows.  相似文献   

5.
Population balance modelling for bubbly flows with heat and mass transfer   总被引:2,自引:0,他引:2  
Population balance equations combined with a three-dimensional two-fluid model are employed to predict bubbly flows with the presence of heat and mass transfer processes. Subcooled boiling flow belongs to this specific category of bubbly flows is considered. The MUSIG (MUltiple-SIze-Group) model implemented in CFX4.4 is further developed to account for the wall nucleation and condensation in the subcooled boiling regime. Comparison of model predictions against local measurements near the test channel exit is made for the radial distribution of the bubble Sauter diameter, void fraction, interfacial area concentration and gas and liquid velocities covering a range of different mass and heat fluxes and inlet subcooling temperatures. Additional comparison was also performed against existing boiling model in CFX4.4 and the modified model developed in our previous work (Int. J. Heat Mass Transfer 45 (2002) 1197). Good agreement is better achieved with the local radial bubble Sauter diameter, void fraction, interfacial area concentration and liquid velocity profiles against measurements using the newly formulated MUSIG boiling model over the simpler boiling models. However, significant weakness of the model is still evidenced in the prediction of the vapour velocity. Work is in progress to circumvent the deficiency of the model by the consideration of additional momentum equations or an algebraic slip model to account for bubble separation.  相似文献   

6.
Various chemical products are synthesized in processes using gas/liquid reactors with bubbly flows. Hence, there is a significant interest in a more efficient process design as well as in process intensification with a strong focus on this reactor class. However, the design of industrial gas/liquid reactors requires more detailed information about the flow structures and characteristics of two‐ or multiphase systems. The basic models for two‐fluid model simulations of dispersed gas/liquid flows in bubble columns at high gas fractions are presented.  相似文献   

7.
Coupled Calculation of Bubble Size Distribution and Flow Fields in Bubble Columns In this paper the use of computational fluid dynamics (CFD) for the calculation of flow fields in bubble columns is explained. The local bubble size distribution is considered with the aid of a simplified balance equation for the average bubble volume in bubbly flow. Models are developed for the rate of bubble break‐up and coalescence based on physical principals. The flow fields in cylindrical bubble columns without internals are calculated using the Euler‐Euler method. The small and large bubble fraction are considered as pseudo‐continuous phases in addition to the liquid phase. The calculated flow fields are characterised by several large scale vortices. The local volume fractions of gas and liquid are very inhomogeneous and highly time dependent. The calculated volume fractions, velocities and bubble size distributions agree well with experimental results for bubble columns up to 0.3 m in diameter.  相似文献   

8.
应用电导探针测量技术,对矩形截面螺旋通道内气液两相流局部含气率进行实验研究。在不同的气相折算速度下,应用电导探针测量了弹状流弹单元的长度,并与可视化方法进行对比,验证了电导探针的可靠性,并为信号处理选择合适的阈值。分别在泡状流、弹状流及环状流三种流型的条件下,分析了气相与液相折算速度对局部含气率分布的影响。实验结果发现,螺旋通道气液两相局部含气率呈非对称的抛物线形分布,这种非对称性受流型和液相折算速度的影响。  相似文献   

9.
An image processing technique was used to study dominant bubble mechanisms in a two-dimensional packed-bed at pore level under the bubbly flow regime. Bubble breakup and coalescence were identified as dominant mechanisms using a large number of image samples. Two types of coalescence mechanisms were identified that occur due to compression and deceleration associated with the bubbles and three breakup mechanisms were identified that are result of liquid shear force, bubble acceleration, and bubble impact. Data on various two-phase parameters, such as local void fraction, bubble velocity, size, number, and shape were obtained from the images. Results indicated that when a flow regime changed from bubbly to either trickling or pulsing flow, the number of average sized bubbles significantly decreased and the shape of the majority of the bubbles was no longer spherical. Although a mean bubble velocity of all sized bubbles was uniform for given gas and liquid superficial velocities, individual bubble velocities were quite different depending on the bubble location in the pore. The present bubble size distributions were compared with previous studies and the results on bubble size are in general agreement.  相似文献   

10.
Bubble splitting in 2D gas‐solid freely bubbling fluidized beds is experimentally investigated using digital image analysis. The quantitative results can be applied for the development of a new breakage model for bubbly fluidized beds, especially discrete bubble models. The variation of splitting frequency with bubble diameter, new resulting bubble volumes, positions, and also the assumptions of mass and momentum conservation for bubbles after breakage are studied in detail. Small bubbles are found to be more stable than large ones and nearly all mother bubbles split into two almost equally sized daughter bubbles. The momentum of gas bubbles in the vertical direction remains approximately constant after breakage, whereas that of bubbles in the horizontal direction changes with no clear trend. The effect of fluidizing gas velocity in breakage frequency is also examined.  相似文献   

11.
In an ejector induced downflow bubble column energy supplied as a high velocity liquid jet is utilized in different sections of the ejector‐contactor system, which leads to air entrainment at the secondary entrance of the ejector. The energy losses in the different sections, viz. ejector, mixing zone and gas‐liquid bubbly flow zone have been evaluated theoretically. Experimental results show that the total energy losses calculated on the basis of theoretical expression are almost the same as energy supplied by the liquid jet. A simple correlation was developed for the air entrainment rate in terms of operating and design parameters of the system.  相似文献   

12.
Various chemical products are synthesized in processes using gas/liquid reactors with bubbly flows. Hence, there is significant interest in a more efficient process design as well as in process intensification with a strong focus on this reactor class. However, the design of industrial gas/liquid reactors requires more detailed information about the flow structures and characteristics of two‐ or multiphase systems. The basic models for two‐fluid model simulations of dispersed gas/liquid flows in bubble columns at high gas fractions are presented..  相似文献   

13.
The Eulerian–Lagrangian simulation of bubbly flow has the advantage of tracking the motion of bubbles in continuous fluid, and hence the position and velocity of each bubble could be accurately acquired. Previous simulation usually used the hard-sphere model for bubble–bubble interactions, assuming that bubbles are rigid spheres and the collisions between bubbles are instantaneous. The bubble contact time during collision processes is not directly taken into account in the collision model. However, the contact time is physically a prerequisite for bubbles to coalesce, and should be long enough for liquid film drainage. In this work we applied the spring-dashpot model to model the bubble collisions and the bubble contact time, and then integrated the spring-dashpot model with the film drainage model for coalescence and a bubble breakage model. The bubble contact time is therefore accurately recorded during the collisions. We investigated the performance of the spring-dashpot model and the effect of the normal stiffness coefficient on bubble coalescence in the simulation.The results indicate that the spring-dashpot model together with the bubble coalescence and breakage model could reasonably reproduce the two-phase flow field, bubble coalescence and bubble size distribution. The influence of normal stiffness coefficient on simulation is also discussed.  相似文献   

14.
One of the greatest challenges in the characterization of bubbles in a bubble column has been the prediction of the bubble diameter and the gas holdup. In this study a novel technique for predicting the mean bubble diameter and the local gas holdup using a non‐invasive ultrasonic method with neural network was investigated. The measurement parameters of the energy attenuation and the transmission time difference of ultrasound are used to obtain the mean bubble diameter and the local gas holdup in an air‐water dispersion system using neural network reconstruction. Bubble size distributions in a 2‐D bubble column are obtained experimentally by using a photographic method. An adequate selection of the neural network structure has been carried out to represent the training data. The representative results using the present structure show good agreement with the measured data.  相似文献   

15.
Based on the experiments carried out over the past decade at microgravity conditions, an overview of our current knowledge of bubbly and slug flows is presented. The transition from bubble to slug flow, the void fraction and the pressure drop are discussed from the data collected in the literature. The transition from bubble to slug flow may be predicted by introducing a critical void fraction that depends on the fluid properties and the pipe diameter: however, the role of coalescence which controls this transition is not clearly understood. The void fraction may be accurately calculated using a drift-flux model: it is shown from local measurements that the drift of the gas with respect to the mixture is due to the non uniform radial distribution of void fraction. The pressuredrop happens to be controlled by the liquid flow for bubbly flow whereas for slug flow the experimental results show that pressure drops is larger than expected. From this study, the guidelines for future research in microgravity are given.  相似文献   

16.
An experimental study was conducted to investigate the 2D bubbly flow downstream of a cylinder. Sparsely distributed bubbles were produced using the ventilation method. The carrier flow was measured using the particle image velocimetry (PIV) technique. The shadow imaging technique was used to capture instantaneous bubbly flow images. An image-processing code was compiled to identify bubbles in acquired image, calculate the bubble equivalent diameter and the bubble velocity. The effects of Reynolds number and the flow rate of the injected air were considered. The result indicates that the carrier flow is featured by distinct flow structures and the wake region is suppressed as the upstream velocity increases. Regarding the bubbles trapped in the wake flow, the number of small bubbles increases with the upstream velocity. On the whole, the bubble velocity is slightly lower than that of the carrier flow. The consistency between small bubbles and the carrier flow is high in terms of velocity magnitude, which is justified near the wake edge. The difference between the bubble velocity and the carrier flow velocity is remarkable near the wake centerline. For certain Reynolds number, with the increase in the air flow rate, the bubble equivalent diameter increases and the bubble void fraction is elevated.  相似文献   

17.
Closure laws are needed for the qualification of CFD codes for two-phase flows. In case of bubbly and slug flow, forces acting on the bubbles usually model the momentum transfer between the phases. Several models for such forces can be found in Literature. They show, that these forces depend on the liquid flow field as well as on the size and the shape of the bubbles. A validation of consistent sets of bubble force models for poly-disperse flows is given, basing on a detailed experimental database for vertical pipe flows, which contains data on the radial distribution of bubbles of different size as well as local bubble size distributions. A one-dimensional (1D) solver provides velocity profiles and bubble distributions in radial direction. It considers a large number of bubble size classes and is used for the comparison with the experiments. The simplified model was checked against the results of full 3D simulations done by the commercial code CFX-5.7 for simplified monodisperse cases. The effects of the number of bubbles classes as well as the effect of the lateral extension of the bubbles were analyzed. For the validation of bubble force models measured bubble size distributions were taken as an input for the calculation. On basis of the assumption of an equilibrium of the lateral bubble forces, radial volume fraction profiles were calculated separately for each bubble class. In the result of the validation of different models for the bubble forces, a set of Tomiyama lift and wall force, deformation force and Favre averaged turbulent dispersion force was found to provide the best agreement with the experimental data. Some discrepancies remain at high liquid superficial velocities.  相似文献   

18.
The subject of this paper is the relative merits of laser-doppler and hot-film measurement techniques in studies of bubbly two-phase flow processes as typically encountered in biological fermentation reactors. A comparison of the two diagnostic systems is made on the basis of simultaneous measurements or local mean velocities and root-mean-square values of velocity fluctuations in a 1100-mm high bubble column of 120-mm square plan. Findings are presented which suggest that optical obscuration may prevent the successful application of laser-doppler velocimetry in bubbly two-phase flow. On the other hand, where applicable, both measurement techniques yield comparable results, a finding which is consistent with observations in single-phase flow.  相似文献   

19.
The optic probe technique is widely used to investigate bubble reactors. To derive values of bubble local velocities and bubble local sizes, a specific signal treatment is usually applied under severe assumptions for bubble path and shape. However, in most industrial reactors, bubble motion is chaotic and no common shape can be assumed.In this work, the reliability of the signal treatment associated with the optic probe technique is examined for distorted and tumbling bubbles. A double-tip optic probe is settled in a glass tank and the rise of bubbles is filmed simultaneously. Several trains of bubbles are studied, interactions between bubbles being gradually increased.Referring to image analysis, several ways to derive mean bubble velocities from optic probe data have been compared. Crenels from front tip and rear tip raw signals are associated and individual bubble velocities are derived. Nevertheless, complete velocity distributions are difficult to obtain, as they depend on the choice of the time within which the bubble is searched on the second tip. Using a simpler approach it is shown that the most probable velocity, calculated through the raw signals inter-correlation, is a correct estimation of the average bubble velocity.Concerning bubble size, bubble chord distributions show too high values due to bubble distortion and deviation. A simplified estimation of bubble mean Sauter diameter, using the most reliable measurements only (i.e., local gas hold-up, local mean bubbling frequency, and most probable bubble velocity), was tested for highly distorted bubbles; this method was validated both in water and cyclohexane.  相似文献   

20.
水平管泡状流局部实验参数的概率统计方法   总被引:2,自引:1,他引:1       下载免费PDF全文
引 言在水平管泡状流相分布的实验研究方面 ,Kocamustafaogullari[1] 对直径为 5 0mm的水平管中的泡状流做了较详细的测量 ,孙科霞等[2 ,3] 对直径为 2 0mm的水平管中的泡状流做了测量 .他们在对测量数据的处理中都假定气泡只沿一个方向运动 ,而没有考虑气泡的横向运动 .事实上 ,气泡在管内运动时 ,在各种力的联合作用下 ,不只是沿探针主轴方向运动 .气泡与探针轴向有一入口角 ,探针测得的只是一种表观速度 ,这一表观速度一般不等于气泡实际速度 .Dias等[4 ]在对双头电导探针测得的垂直管泡状流参数统计时考虑…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号