首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel single‐ion conducting polymer electrolytes based on electrospun poly(lithium 2‐acrylamido‐2‐methylpropanesulfonic acid) (PAMPSLi) membranes were prepared for lithium‐ion batteries. The preparation started with the synthesis of polymeric lithium salt PAMPSLi by free‐radical polymerization of 2‐acrylamido‐2‐methylpropanesulfonic acid, followed by ion‐exchange of H+ with Li+. Then, the electrospun PAMPSLi membranes were prepared by electrospinning technology, and the resultant PAMPSLi fiber‐based polymer electrolytes were fabricated by immersing the electrospun membranes into a plasticizer composed of ethylene carbonate and dimethyl carbonate. PAMPSLi exhibited high thermal stability and its decomposition did not occur until 304°C. The specific surface area of the electrospun PAMPSLi membranes was raised from 9.9 m2/g to 19.5 m2/g by varying the solvent composition of polymer solutions. The ionic conductivity of the resultant PAMPSLi fiber‐based polymer electrolytes at 20°C increased from 0.815 × 10?5 S/cm to 2.12 × 10?5 S/cm with the increase of the specific surface area. The polymer electrolytes exhibited good dimensional stability and electrochemical stability up to 4.4 V vs. Li+/Li. These results show that the PAMPSLi fiber‐based polymer electrolytes are promising materials for lithium‐ion batteries. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
Modified carbon nanotubes (m‐CNTs) were successfully prepared by the interactions between nitric and sulfuric acids and CNTs, which was confirmed using Fourier transform infrared spectroscopy. Poly[(vinylidene fluoride)‐co‐hexafluoropropylene]‐based composite polymer electrolyte (CPE) membranes doped with various amounts of m‐CNTs were prepared by phase inversion method. The desired CPEs were obtained by soaking the liquid electrolytes for 30 min. The physicochemical and electrochemical properties of the CPE membranes were investigated using scanning electron microscopy, X‐ray diffraction, thermogravimetry, electrochemical impedance spectroscopy and linear sweep voltammetry. The results show that the CPE membranes doped with 2.2 wt% m‐CNTs possess the smoothest surface and the highest decomposition temperature about 450 °C. Obviously, adding an appropriate amount of m‐CNTs into the polymer matrix can decrease the crystallinity and enhance the ionic conductivity; the temperature dependence of ionic conductivity follows the Arrhenius relation and the ionic conductivity at room temperature is up to 4.9 mS cm?1. The interfacial resistance can reach a stable value of about 415 Ω cm?2 after 10 days storage. The excellent rate and cycle performances with an electrochemical working window up to 5.4 V ensure that the CPEs doped with 2.2 wt% m‐CNTs can be considered as potential candidates as polymer electrolyte for lithium ion batteries. © 2013 Society of Chemical Industry  相似文献   

3.
Microporous polyamide membranes were activated by 1,1′‐carbonyldiimidazole (CDI) and subsequently bound with hydroxyethyl cellulose (HEC) to amplify reactive groups. Then poly‐L ‐lysine (PLL) as ligand was immobilized onto the HEC‐nylon membranes. The contents in HEC and PLL of PLL‐attached membranes were 153.2 and 63.8 mg (g nylon membrane)?1, respectively. Such PLL‐HEC affinity membranes were used to adsorb bilirubin from bilirubin‐phosphate and bilirubin‐albumin solutions. The adsorption mechanism of bilirubin and the effects of temperature and ionic strength on adsorption were investigated by batch experiments. The results showed that the adsorption capacity increased with increasing temperature but decreased with increasing NaCl concentration, and the adsorption isotherm fitted the Freundlich model well. Dynamic experiments showed that PLL‐attached membranes can readily remove the bilirubin from bilirubin‐albumin solutions. Copyright © 2005 Society of Chemical Industry  相似文献   

4.
Cellulose‐based membrane is a satisfactory candidate for the separator of lithium‐ion batteries due to its renewability, abundant pore structure and outstanding thermal–chemical stability. In this study, 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPO) oxidized cellulose fiber (TOCF) membranes with different oxidation degrees were prepared. Membranes with high oxidation degree are faced with a pore closure issue, resulting in low porosity. In order to improve the pore structure, the TOCF membranes were dried differently through air drying, vacuum drying and freeze drying. Furthermore, air‐dried membranes were processed by three organic solvents – n‐butyl alcohol, carbon tetrachloride and n‐heptane. The physical properties, pore structure characteristics, mechanical properties and the electrochemical performance of the membranes were measured and characterized. From the results, freeze drying is found to provide the highest porosity and mean pore diameter. Unfortunately, Young’s modulus of the freeze‐dried membranes is the smallest as well. However, membranes processed by n‐butyl alcohol have weak tensile properties. Compared to non‐processed membranes, membranes processed by organic solvents present better pore structure and significantly better electrochemical performance. With all properties considered, TOCF membranes processed by carbon tetrachloride or n‐heptane are qualified for serving as battery separators as they possess improved pore structure, enhanced Young’s modulus, considerable tensile strength and improved electrochemical properties. © 2020 Society of Chemical Industry  相似文献   

5.
The research on flexible and wearable devices has attracted extensive attention in the last few years. Lithium–sulfur (Li‐S) batteries are regarded as a promising option because of their high theoretical capacity and energy density. Here, cable‐shaped Li‐S batteries are developed based on a nitrogen‐doped carbon/carbon nanotube/sulfur (NCNT/S) composite cathode and lithium metal anode. The carbon nanotube (CNT) yarns with high conductivity and an appropriate amount of doped nitrogen are synthesized by wet‐spinning followed by a carbonization process, and further act as a self‐supported conductive backbone for the active material. The NCNT/S yarns exhibit a high initial capacitance of 1001 mAh g?1 and excellent cyclic stability with 87% capacity retention after 200 cycles at 0.5 C. Furthermore, the assembled cable‐shaped Li‐S batteries by NCNT/S yarns present good ability to light up the LEDs for more than 8 h under normal and bending states at various angles, indicating that the cable‐shaped Li‐S batteries could be a prospective candidate for application in wearable electronics.  相似文献   

6.
Microporous additives like nanosized metal‐organic framework (MOF) particles can improve the gas separation performance of polymer membranes. These membranes which consist of added filler particles in a continuous polymer phase are called mixed‐matrix membranes (MMM). While inorganic zeolites and organic polymers do not match well, the preparation of defect‐free MOF‐based MMMs is much easier. However, some problems can also occur during the preparation. Solutions how to avoid them and prepare perfect MMMs are given. In practical gas separation, the selectivity of the MMMs was found to be even higher than predicted by the Maxwell model.  相似文献   

7.
Metal‐air batteries, especially the rechargeable type, are currently of great interest for many industrial sectors. Besides the potentially low‐cost zinc‐air system, the potentially high‐energy lithium‐air system, originally intended as a high‐energy storage device for electric mobility, has been investigated a lot within the last ten years. Within this article, rechargeable zinc‐air and lithium‐air systems will be discussed. Especially the role of the gas diffusion electrode will be described and general trends for further developments will be given.  相似文献   

8.
New types of composite anion‐exchange membranes were prepared by blending of suspension‐produced poly(vinyl chloride) (S‐PVC) and poly(styrene‐co‐butadiene), otherwise known as styrene–butadiene rubber (SBR), as binder, along with anion‐exchange resin powder to provide functional groups and activated carbon as inorganic filler additive. Also, an ultrasonic method was used to obtain better homogeneity. In solutions with mono‐ and divalent anions, the effect of activated carbon and sonication on the morphology, electrochemical properties and selectivity of these membranes was elucidated. For all solutions, ion‐exchange capacity, membrane potential, permselectivity, transport number, ionic permeability, flux and current efficiency of the prepared membranes initially increased on increasing the activated carbon concentration to 2 wt% in the casting solution and then began to decrease. Moreover, the electrical resistance and energy consumption of the membranes initially decreased on increasing the activated carbon loading to 2 wt% and then increased. S‐PVC‐blend‐SBR membranes with additive showed a decrease in water content and a slight decrease in oxidative stability. Also, these membranes showed good monovalent ion selectivity. Structural images of the prepared membranes obtained using scanning optical microscopy showed that sonication increased polymer‐particle interactions and promoted the compatibility of particles with binder. Copyright © 2010 Society of Chemical Industry  相似文献   

9.
Lithium‐ion battery is a mature technology that is used in various electronic devices. Nowadays, this technology is a good candidate as energy storage for electric vehicles. Therefore, much research is focused on the development of high‐density power lithium‐ion batteries. Government regulations force manufacturers to recycle the batteries for safety and health reasons but recycling could also be interesting from an economic viewpoint since cathodes in lithium‐ion batteries contain valuable metals. The electrodes in lithium‐ion batteries will evolve to provide more energy and the recycling processes will have to fit with this evolution. Leaching, bioleaching and solvent extraction are at the centre of these processes. In this paper, recent leaching and solvent extraction strategies for recovering valuable metals from spent lithium‐ion batteries are reviewed and the evolution of these processes is discussed. © 2013 Society of Chemical Industry  相似文献   

10.
The residual stress and buckling patterns of free‐standing 8 mol.% yttria‐stabilized‐zirconia (8YSZ) membranes prepared by pulsed laser deposition and microfabrication techniques on silicon substrates are investigated by wafer curvature, light microscopy, white light interferometry, and nanoindentation. The 300 nm thin 8YSZ membranes (390 μm × 390 μm) deposited at 25 °C are almost flat after free‐etching, whereas deposition at 700 °C yields strongly buckled membranes with a compressive stress of –1,100 ± 150 MPa and an out‐of‐plane‐displacement of 6.5 μm. These latter membranes are mechanically stable during thermal cycling up to 500 °C. Numerical simulations of the buckling shape using the Rayleigh–Ritz‐method and a Young's modulus of 200 GPa are in good agreement with the experimental data. The simulated buckling patterns are used to extract the local stress distribution within the free‐standing membrane which consists of tensile and compressive stress regions that are below the failure stresses. This is important regarding the application in, e.g., microsolid oxide fuel cell membranes which must be thermomechanically stable during microfabrication and device operation.  相似文献   

11.
Composite membranes were prepared by incorporating ZSM‐5 zeolite into poly(ether‐block‐amide) (PEBA) membranes. These composite membranes were characterized by TGA, XRD, and SEM. The results showed that the zeolite could distribute well in the polymer matrix. And when the zeolite content reached 10%, the agglomeration of zeolite in the membranes was found. The composite membranes were used to the pervaporative separation of n‐butanol aqueous solution. The effect of zeolite content on pervaporation performance was investigated. With the contribution of preferential adsorption and diffusion of n‐butanol in the polymer matrix and zeolite channel, the 5% ZSM‐5‐PEBA membrane showed enhanced selectivity and flux. The effects of liquid temperature and concentration on separation performance were also investigated. All the composite membranes demonstrated increasing separation factor and permeation flux with increasing temperature and concentration. Incorporation of ZSM‐5 could decrease the activation energy of n‐butanol flux of the composite membrane. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
Clear blends of chitosan with poly(N‐vinyl‐2‐pyrrolidone) (PVP) made from aqueous solutions appear to be miscible from visual appearance. Infrared (IR) spectra used to investigate the carbonyl—hydroxyl hydrogen bonding in the blends indicated compatibility of two polymers on a molecular level. The IR spectra were also used to determine the interaction change accessing with increasing temperature and indicated that a significant conformational change occurred. On the other hand, the blend membranes were evaluated for separation of methanol from methyl tert‐butyl ether. The influences of the membrane and the feed compositions were investigated. Methanol preferentially permeates through all the tested membranes, and the partial flux of methanol significantly increase with the poly(N‐vinyl‐2‐pyrrolidone) content increasing. The temperature dependence of pervaporation performance indicated that a significant conformational change occurred with increasing temperature. Combined with the IR results, the pervaporation properties are in agreement with characteristics of interaction between chain–chain within the blend membranes. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1452–1458, 1999  相似文献   

13.
In recent years, great progress has been made in the development of proton‐exchange membrane fuel cells (PEMFCs) for both mobile and stationary applications. This review covers two types of new membranes: (1) carbon dioxide‐selective membranes for hydrogen purification and (2) proton‐exchange membranes; both of these are crucial to the widespread application of PEMFCs. On hydrogen purification for fuel cells, the new facilitated transport membranes synthesized from incorporating amino groups in polymer networks have shown high CO2 permeability and selectivity versus H2. The membranes can be used in fuel processing to produce high‐purity hydrogen (with less than 10 ppm CO and 10 ppb H2S) for fuel cells. On proton‐exchange membranes, the new sulfonated polybenzimidazole copolymer‐based membranes can outperform Nafion® under various conditions, particularly at high temperatures and low relative humidities. Copyright © 2010 Society of Chemical Industry  相似文献   

14.
The ionic conductivity of Nafion® 1100 extruded membranes re‐cast from solutions of butan‐1‐ol and propan‐2‐ol is measured in 0.5 mol dm–3 H2SO4 at 295 K, using an immersed, four‐electrode d.c. technique. The general trend is an increasing conductivity for the thicker membranes. Materials which were solution‐cast from butan‐1‐ol yielded the highest conductivity while a series of membranes with lower conductivities (similar to those of an extruded Nafion® 1100 series of membranes) was found using propan‐2‐ol. The conductivity results indicate that membranes manufactured by extrusion and casting from various solvents might have different structures. Differences in the water content and conductivity of the membranes are considered to arise from the impact of processing conditions on the surface and bulk structure of the membranes.  相似文献   

15.
Proton‐exchange membranes containing poly(styrene sulfonic acid) grafts hosted in poly(vinylidene fluoride) (PVDF) films were prepared using two radiation‐induced grafting methods: a single‐step grafting method (SSGM) involving grafting of sodium styrene sulfonate onto electron beam (EB)‐irradiated PVDF films and a conventional two‐step grafting method (CTSGM) in which styrene monomer is grafted onto EB‐irradiated PVDF films and subsequently sulfonated. Differential scanning calorimetry, universal mechanical testing and scanning transmission electron microscopy were used to evaluate the thermal, mechanical and structural changes developed in the membranes during the preparation procedures. Physicochemical properties such as water uptake, hydration number and ionic conductivity were studied as functions of ion‐exchange capacity and the results obtained were correlated with the structural changes accompanying each preparation method. Membranes obtained using the SSGM were found to have superior properties compared to their counterparts prepared using the CTSGM suggesting the former method is more effective than the latter for imparting desired functionality and stability properties to the membranes. Copyright © 2010 Society of Chemical Industry  相似文献   

16.
Polystyrene cation exchange membranes were prepared by a PVC‐based semi‐interpenetrating polymer network (IPN) method. The reaction behaviors during polymerization and sulfonation in the preparation method were investigated. The prepared membranes were characterized in terms of the physical and electrochemical properties. The membranes exhibited reasonable mechanical properties (tensile strength, 13 MPa, and elongation at break, 52%) for an ion‐exchange membrane with the ratio of polystyrene–divinylbenzene (DVB)/poly(vinyl chloride) (PVC) (RSt‐DVB/PVC) of below 0.9. Fourier transform infrared/attenuated total reflectance, differential scanning calorimetry, and scanning electron microscopy studies revealed the formation of a homogeneous membrane. The resulting membrane showed membrane electrical resistance of 2.0 Ω cm2 and ion‐exchange capacity of 3.0 meq/g dry membrane. The current–voltage (I–V) curves of the membrane show that the semi‐IPN polystyrene membranes can be properly used at a high current density, and that the distribution of cation‐exchange sites in the membrane was more homogenous than that in commercial membranes. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1488–1496, 2003  相似文献   

17.
Cross‐linked hydroxy terminated polybutadiene (HTPB)‐based polyurethaneurea (PU), HTPB‐divinyl benzene (DVB)‐PU, was synthesized by a three‐step polymerization process. It was first used as membrane material to separate p‐/o‐xylene mixtures by pervaporation (PV). The effects of the content of cross‐linker DVB, feed concentration, and operating temperature on the PV performance of HTPB‐DVB‐PU membranes were investigated. The membranes demonstrated p‐xylene permselectivity as well as high total flux. The introduction of DVB significantly enhanced the temperature resistance ability of the HTPB‐DVB‐PU membranes. With increasing DVB content, the separation factor increased while the total flux decreased a little. The highest separation factor reaches 2.01 and the total flux is 33 g/m2h with feed concentration of 10 wt % p‐xylene at 30°C. These PV performances with increasing DVB content were explained in terms of the view point of chemical compositions and physical structures of the HTPB‐DVB‐PU membranes. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
The copolymer poly(vinylidene fluoride)‐graft‐poly(4‐vinylpyridine) (PVDF‐g‐P4VP) was prepared through the graft copolymerization of poly(vinylidene fluoride) with 4‐vinylpyridine. Through the blending of the PVDF‐g‐P4VP copolymer with poly(N‐isopropylacrylamide) (PNIPAm) in an N‐methyl‐2‐pyrrolidone solution, PVDF‐g‐P4VP/PNIPAm membranes were fabricated by phase inversion in aqueous media. Elemental analyses indicated that the blend concentration of PNIPAm in the blend membranes increased with an increase in the blend ratio used in the casting solution. Scanning electron microscopy revealed that the membrane surface tended to corrugate at a low PNIPAm concentration and transformed into a smooth morphology at a high PNIPAm concentration. The surface morphology and pore size distribution of the microfiltration membranes could be regulated by the blend concentration of the casting solution, temperature, pH, and ionic strength of the coagulation bath. X‐ray photoelectron spectroscopy revealed a significant enrichment of PNIPAm on the membrane surface. The flux of aqueous solutions through the blend membranes exhibited a pH‐ and temperature‐dependent behavior. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4089–4097, 2006  相似文献   

19.
Thin cathodes for micro‐solid oxide fuel cells (micro‐SOFCs) are fabricated by spin‐coating a suspension of La0.6Sr0.4CoO3–δ (LSC) nanoparticulates obtained by salt‐assisted spray pyrolysis. The resulting 250 nm thin LSC layers exhibit a three‐dimensional porous microstructure with a grain size of around 45 nm and can be integrated onto free‐standing 3 mol.% yttria‐stabilized‐zirconia (3YSZ) electrolyte membranes with high survival rates. Weakly buckled micro‐SOFC membranes enable a homogeneous distribution of the LSC dispersion on the electrolyte, whereas the steep slopes of strongly buckled membranes do not allow for a perfect LSC coverage. A micro‐SOFC membrane consisting of an LSC cathode on a weakly buckled 3YSZ electrolyte and a sputtered Pt anode has an open‐circuit voltage of 1.05 V and delivers a maximum power density of 12 mW cm–2 at 500 °C.  相似文献   

20.
Ethanol‐responsive smart membranes with different microstructures are prepared from blends of polyethersulfone (PES) and poly(N‐isopropylacrylamide) (PNIPAM) nanogels by immersion precipitation phase inversion method in a convenient and controllable manner. The introduction of PNIPAM nanogels forms the microporous structures on the surface of the top skin layer and on the pore walls of the finger‐like porous sublayer of membranes. The ethanol‐responsive characteristics of the proposed PES composite membranes are systematically investigated. With increasing ethanol concentration in the range from 0 to 15 wt %, the trans‐membrane flux of ethanol solution increases. The microstructures and the resultant ethanol‐responsive characteristics of the composite membranes can be regulated by the content of PNIPAM nanogels blended in the membranes. The more the content of PNIPAM nanogels blended in the membranes, the more the number of the submicron pores is, and thus the better the ethanol‐responsive characteristics of the composite membranes. The proposed ethanol‐responsive smart membranes are expected to be combined with the traditional pervaporation membranes as a smart vavle to achieve continuous and highly efficient ethanol production during the biological fermentation. The preparation technique and results in this study provide valuable guidance for further design and the industrial‐scale fabrication of novel composite membranes for application in ethanol separation systems. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41032.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号