首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In the present study, a wearable coplanar waveguide fed flexible microstrip antenna is proposed, which is based on the floating‐ground backplane. When the antenna is placed on a high‐loss human body, the antenna maintains reasonable impedance matching and exhibits a peak gain of 5.6 dBi. Moreover, the performance of the antenna under different bending radii and crumpling conditions is also analyzed. The simulation and experimental results show that the bending and crumpling have little effect on the impedance bandwidth and radiation pattern of the proposed antenna. Accordingly, it is concluded that the proposed antenna has great robustness. Furthermore, it is found that the proposed floating‐ground backplane structure significantly reduces the backward radiation of the planar antenna and enables the antenna to obtain a very low specific absorption rate (SAR) and increase the antenna gain. It should be indicated that antennas with great robustness, very low SAR, and small size are ideal candidates for wearable applications.  相似文献   

2.
This article presents the design of a three‐port diversity antenna capable of producing three‐directional radiation pattern for vehicular communications. The proposed antenna consists of three uncorrelated Vivaldi antennas that are interconnected and developed on a single printed circuit board. Unlike many other antennas reported for the vehicular environment, the proposed antenna offers ultra‐wideband characteristics with end‐fire radiation pattern leading to high realized antenna gain. The integrated antenna has a footprint of 65 × 40 × 1.6 mm3 and offers 6 GHz impedance bandwidth extending from 5 to 11 GHz. The port‐to‐port isolation is greater than 20 dB within the operating bandwidth. Furthermore, the diversity performance of the proposed three‐port antenna system is evaluated and presented. The calculated envelope correlation coefficient, diversity gain, and mean effective gain are well above the minimum requirement. The prototype antenna is fabricated and the experimental results are presented.  相似文献   

3.
A new millimeter‐wave antenna structure on a low‐cost, production platform integrated passive device technology is presented. The antenna consists of a 2‐by‐1 array of slot antennas at 60 GHz. An in‐house developed on‐chip antenna measurement setup was used to characterize the fabricated antenna. The measurement results show an antenna gain of more than 5 dBi with a return loss of 18 dB at 60 GHz. The better‐than‐10‐dB impedance bandwidth of the antenna covers the 60‐GHz unlicensed band from 57 to 64 GHz. The 3‐dB beamwidths of the antenna are 105° and 76° at E‐plane and H‐plane at 60 GHz, respectively. The size of the die of the antenna is 2 mm × 4.5 mm. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:155–160, 2014.  相似文献   

4.
Implantable tag antennas are an integral component of contemporary pervasive patient monitoring setups envisioned to reduce the medical errors and improve the quality of health care facilities. These tags, embedded into the human body, transmit critical patient information to the external equipment via a wireless communication link. This research article presents an implantable compact folded dipole antenna of size 10 mm × 15 mm × 2 mm, designed to operate in the industrial‐scientific‐medical band (2.4‐2.48GHz). A three‐layered phantom representing the human arm is used to evaluate the subcutaneous antenna performance. The tag antenna embedded in the middle of the fat layer offers a maximum gain of ?16.3 dBi. The tag antenna performance as a function of implant position and phantom dimensions is analyzed. Link budget calculations show that with the achieved antenna gain the link power exceeds the required power by 38.37 dBm, and hence wireless communication is viable.  相似文献   

5.
This article explores the design and analysis of a novel ultra‐wideband (UWB) antenna for body‐centric applications. The designed antenna consists of circular ring structured radiating element with 24 spokes, which resembles the shape of Ashoka chakra (Indian National flag emblem). The antenna placed on the semi flexible RT/Duroid 5880 with dielectric constant of 2.2 and occupying the dimension of 30 × 25 × 0.8 mm3. The present design aims at optimizing the antenna structure to cater UWB operating spectrum (3.1‐10.6 GHz) with a novel patch shape, which looks like the Ashoka chakra. The proposed antenna is analyzed by placing on three‐layered human phantom model and examined on head, arm at three of its operating frequencies. The maximum specific absorption rate (SAR) is found to be 1.23 W/kg and 1.29 W/kg when computed at arm and head of the human body respectively. The SAR values are observed under those conditions are satisfying the international safety standards such as FCC & IEEE C95.1:2005 & ICNIPR. Analysis of system savant (ANSYS Savant) radiation performance characteristics are also studied by placing the proposed antenna on virtual human body environment.  相似文献   

6.
7.
A compact planar frequency reconfigurable dual‐band multiple‐input‐multiple‐output (MIMO) antenna with high isolation and pattern/polarization diversity characteristics is presented in this article for WiFi and WiMAX standards. The MIMO configuration incorporates two symmetrically placed identical antenna elements and covers overall size of 24 mm × 24 mm × 0.762 mm. Reconfiguration of each antenna element is achieved by using a PIN diode which allows antennas to switch from state‐1 (2.3‐2.4 GHz and 4.6‐5.5 GHz) to state‐2 (3.3‐3.5 GHz and 4.6‐5.5 GHz). In state‐1, the configuration offers isolation ≥18 dB and 20 dB in lower band (LB) and upper band (UB) respectively; whereas, in state‐2, isolation ≥21 dB and 20 dB in LB and UB respectively is achieved. The same decoupling circuit provides high isolation in dual‐band of two states, which makes overall size of the proposed design further compact. The antennas are characterized in terms of envelope correlation coefficient, radiation pattern, gain, and efficiency. From measured and simulated results, it is verified that the proposed frequency reconfigurable dual‐band multi‐standard MIMO antenna design shows desirable performance in both operating bands of each state and compact size of the design makes it suitable for small form factor devices used in future wireless communication systems.  相似文献   

8.
Present article embodies the design and analysis of slotted circular shape metamaterial loaded multiband antenna for wireless applications with declination of SAR. The electrical dimension is 0.260 λ × 0.253 λ × 0.0059 λ (35 × 34 × 0.8 mm3) of proposed design, at lower frequency of 2.23 GHz. The antenna consists of circular shape rectangular slot as the radiation element loaded with metamaterial split ring resonator (SRR) and two parallel rectangular stubs, etched rectangular single complementary split‐ring resonator (CSRR) and reclined T‐shaped slot as ground plane. Antenna achieves hepta bands for wireless standards WLAN (2.4/5.0/5.8 GHz), WiMAX (3.5 GHz), radio frequency identification (RFID) services (3.0 GHz), Upper X band (11.8 GHz—for space communication) and Lower KU band (13.1 GHz—for satellite communication systems operating band). Stable radiation patterns are observed for the operating bands with low cross polarization. The SRR is responsible for creating an additional resonating mode for wireless application as well as provide the declination in SAR about 13.3%. Experimental characteristic of antenna shows close agreement with those obtained by simulation of the proposed antenna.  相似文献   

9.
A miniaturized inset‐fed on‐body meandered bowtie antenna designed for brain microwave imaging systems is presented in this article. The proposed on‐body antenna can contribute to the realization of a wearable and portable brain microwave imaging system. The size of 18 × 18 mm2 is achieved at a frequency range of 0.75 to 4 GHz by the simultaneous use of self‐complementary structures and meandered lines. The frequency band is a trade‐off between penetration depth and spatial resolution. The proposed antenna performance was studied at different positions on the human head voxel model in terms of several parameters such as reflection coefficient, near‐field directivity, and fidelity factor. In addition, the antenna bandwidth was surveyed on several volunteers using a wearable measurement setup. It has been found that the averages of measured reflection coefficients in different scenarios are in good agreement with the corresponding simulation results, and the antenna shows stable performance under different practical situations. The proposed antenna takes advantage of a small footprint and body matching, which make it an eligible choice for compact, portable, and wearable head microwave imaging systems.  相似文献   

10.
A compact four and eight elements multiple‐input‐multiple‐output (MIMO) antenna designed for WLAN applications is presented in this article. The antenna operates in IEEE 802.11b/g WLAN (2.4 GHz), IEEE 802.11 ac/n WLAN (5.2 and 5.8 GHz) and WiMAX (5.8 GHz) bands. The resonated mode of the antenna is achieved by two unequal Reverse‐L shaped, line‐shaped slots on top and parasitic element on the ground layer. The single antenna provides wide bandwidth of about 29% (2.3‐3.1 GHz) in lower and 22% (4.9‐6.1 GHz) in the upper band. The compactness of the single element antenna is found about 95% with respect to the patch and 61% in overall dimension. Thereafter an investigation is carried out to design two, four, and eight elements MIMO antennas. All of the multi‐element structures provide compact configuration and cover entire WLAN frequency ranges (2.4‐2.48 and 5.15‐5.85 GHz). The dimension of the proposed eight element MIMO antenna is 102 × 52 × 1.6 mm3. It covers the frequency (measured) from 2.4 to 3.1 GHz and 5 to 6.1 GHz. The diversity performance of the proposed MIMO antenna is also assessed in terms of the envelope correlation coefficient (ECC), diversity gain (DG), and total active reflection co‐efficient (TARC). The ECC is found <0.5 whereas the DG >9.0 is obtained for the desired bands.  相似文献   

11.
A reconfigurable wearable repeater antenna (RWRA) for wireless body area network (WBAN) applications is proposed. The RWRA can work at triple‐mode by controlling the state of PIN diodes, which are repeater, on‐body and off‐body modes. The antenna is fed by a single port at side instead of bottom for the sake of reducing the profile and improving the coupling strength between the RWRA and an implantable antenna. The total size of the antenna is π × 282 × 4.8 mm3. To validate the performance, the RWRA is fabricated and measured on minced pork. Measured bandwidths at repeater and on‐/off‐body modes are 5.8, 84, and 54 MHz, respectively. Radiation patterns are omnidirectional with vertical polarization at on‐body mode and broadside at off‐body mode, which measured peak gains are 1.2 and 5.4 dBi, respectively. Specific absorption rate (SAR) values at all three modes are analyzed in this article as well. Coupling strength between the RWRA and an implantable antenna is also measured. Besides, the effect of distance and misalignment between them are analyzed.  相似文献   

12.
In this paper, nested hexagonal ring‐shaped fractal antennas are designed and investigated which are different from each other in patch orientation. Initially, the multiband integrated wideband hexagonal nested ring antenna is designed (antenna‐I). To improve the multiband/wideband behavior, the patch orientation of antenna‐I is changed to ?60°/60° (antenna‐II), ?120°/120° (antenna‐III), and ?180°/180° (antenna‐IV). Antennas are designed on low cost FR‐4 glass epoxy substrate with relative permittivity of 4.4 and overall dimension 30 × 30 × 1.6 mm3. Comparison among antennas have been made and found that the antennas with negative orientation exhibit better results in terms of bandwidth, impedance matching, number of frequency bands, and gain. Designed antennas have been compared with each other and found that antennas‐II and III are better in performance as compared to antennas‐I and IV. Antenna‐II exhibits wider bandwidth of 1.26 (2.52‐3.78 GHz), 2.75 (4.03‐6.78 GHz), and 6.1 GHz (7.82‐13.92 GHz) with maximum gain of 7.14 dB. Similarly; antenna‐III exhibits the bandwidth of 340 MHz (1.92‐2.26 GHz), 820 MHz (3.04‐3.86 GHz), 4230 MHz (5.38‐9.61 GHz), and 3040 MHz (10.41‐13.45 GHz) with a maximum gain of 6.19 dB. Prototype of the designed antennas with satisfactory orientations are fabricated and tested for the validation of results. Simulated and measured results are also juxtaposed and observed in good agreement with each other. Antennas exhibit bidirectional and omnidirectional pattern in E‐plane and H‐plane, respectively, also the radiation efficiency of antennas are in acceptable range from 75% to 95%. Due to the wider bandwidth of designed antennas, they can be used for different wireless standards such as Advance Wireless Services AWS‐1, AWS‐2, AWS‐3, Wi‐MAX, WLAN, X‐band satellite communication, point‐to‐point wireless applications, ITU band, military satellite communication, television broadcasting, and military land and airborne systems.  相似文献   

13.
In this article, a triple‐band metamaterial (MTM)‐inspired antenna has been designed and analyzed using finite difference time domain technique (FDTD). The proposed MTM consists of two L‐dumbbell‐shaped unit cells, feed, and partial ground plane. The proposed antenna shows triple‐band characteristics with impedance bandwidths of 10.6, 4.67, and 26.8% centered at 2.4, 3, and 5.7 GHz, respectively. The first two bands are working at zeroth‐order resonating mode and first‐order resonating mode while third is due to series slot and coupling between feed and ground plane. It offers compact nature with total antenna size of 30 × 30 × 1.6 mm3. The proposed triple‐band antenna has been designed and analyzed using FDTD code based on convolutional perfectly matched layer boundary conditions and HFSS as well. The prototype antenna has also been fabricated and tested experimentally to validate the simulation results. The proposed antenna exhibits good radiation characteristics throughout the working bands. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:688–695, 2015.  相似文献   

14.
A miniaturized dual‐band metamaterial (MTM) antenna has been designed in this article. The designed coplanar waveguide fed antenna has composed of inner split‐ring resonator and an outer open ring resonator with rectangular stub. The series parameter of the antenna is used to determine the zeroth order resonance frequency due to short‐ended boundary condition. The whole size of proposed structure is 20 × 25.5 mm2. This MTM antenna exhibits dual‐band operation at 3.17 GHz (3.1–3.22 GHz) and 5.39 GHz (5.27–5.47 GHz). The proposed MTM structure achieves measured peak gain of 0.71 and 1.89 dB at 3.17 and 5.39 GHz, respectively. The proposed antenna can be used for recent radio communication in form of S‐band application and Wi‐MAX.  相似文献   

15.
This article proposes a compact (6 × 21 × 0.4 mm3) antenna with dual‐band operation that satisfies the wireless local area network. To achieve optimal impedance matching for the lower and upper operating bands, the proposed antenna structure is designed as a quasi‐self‐complementary (QSC) type, in which the lower (2.4 GHz) operating band is excited through the loop‐like structure of the proposed antenna, whereas its self‐complementary counterpart (rectangular patch structure) induces the upper (5.2/5.8 GHz) operating band. Further investigation was also conducted by printing the proposed QSC antenna onto a flexible substrate of 0.063 mm in thickness. To cover both operating bands, the proposed flexible antenna was restructured to 20.5 × 8 mm2. The design and initial characteristics of the two proposed antennas were discussed in detail via simulation, and the experimental results showed satisfactory performance of both operating bands. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:298–305, 2014.  相似文献   

16.
A novel zeroth‐order resonator (ZOR) meta‐material (MTM) antenna with dual‐band is suggested using compound right/left handed transmission line as MTM. In this article, suggested antenna consists of patch through series gap, two meander line inductors, and two circular stubs. The MTM antenna is compact in size which shows dual‐band properties with first band centered at 2.47 GHz (2.05‐2.89 GHz) and second band is centered at 5.9 GHz (3.70‐8.10 GHz) with impedance bandwidth of (S11 < ? 10 dB) 34.69% and 72.45%, respectively. At ZOR mode (2.35 GHz), the suggested antenna has overall dimension of 0.197λo × 0.07λo × 0.011λo with gain of 1.65 dB for ZOR band and 3.35 dB for first positive order resonator band which covers the applications like Bluetooth (2.4 GHZ), TV/Radio/Data (3.700‐6.425 GHz), WLAN (5‐5.16 GHz), C band frequencies (5.15‐5.35, 5.47‐5.725, or 5.725‐5.875 GHz) and satellite communication (7.25‐7.9 GHz). The radiation patterns of suggested structure are steady during the operating band for which sample antenna has been fabricated and confirmed experimentally. It exhibits novel omnidirectional radiation characteristics in phi = 0° plane with lower cross‐polarization values.  相似文献   

17.
In this article, a dual‐band beam scanning antenna with filtering capability is proposed by using novel dual‐eighth mode substrate integrated waveguide‐based dual‐band metamaterial (DB‐MTM) structure. The novel DB‐MTM structure consists of two interconnected modified eighth mode substrate integrated waveguide (EMSIW) structures, which is designed by etching four interdigital fingers on the upper ground, and has two balanced composite right/left‐handed (CRLH) passbands. Taking advantage of the continuous phase constant changing from negative to positive values within the two CRLH passbands of the DB‐MTM structure, a beam scanning antenna, which is composed of 11 dB‐MTM unit cells, is designed to achieve continuous beam scanning from backward to forward directions within dual operating frequency bands. For verification, the proposed dual‐band antenna is fabricated and measured. According to the measurements, the fabricated antenna can scan its main beam from ?72° to +57° and ?70° to +38° over the two operating frequency bands of 3.40‐4.95 GHz and 5.85‐6.80 GHz, respectively; and exhibits very sharp transitions at the band edges over the two operating frequency bands. Besides, the measured peak gains in the two operating bands are 14.0 dB at 4.5 GHz and 14.5 dB at 6.4 GHz. Moreover, the measurements show good agreement with the simulations, proving the validity of the design method, and further expanding the applications of EMSIW.  相似文献   

18.
This article reports a high gain millimeter‐wave substrate integrated waveguide (SIW) antenna using low cost printed circuit board technology. The half elliptic slots which can provide small shunt admittance, low cross polarization level and low mutual coupling are etched on the board surface of SIW as radiation slots for large array application. Design procedure for analyzing the characteristics of proposed radiation slot, the beam‐forming structure and the array antenna are presented. As examples, an 8 × 8 and a 32 × 32 SIW slot array antennas are designed and verified by experiments. Good agreements between simulation and measured results are achieved, which shows the 8 × 8 SIW slot array antenna has a gain of 20.8 dBi at 42.5 GHz, the maximum sidelobe level of 42.5 GHz E‐plane and H‐plane radiation patterns are 22.3 dB and 22.1 dB, respectively. The 32 × 32 SIW slot array antenna has a maximum measured gain of 30.05 dBi at 42.5 GHz. At 42.3 GHz, the measured antenna has a gain of 29.6 dBi and a maximum sidelobe level of 19.89 dB and 15.0 dB for the E‐plane and H‐plane radiation patterns. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:709–718, 2015.  相似文献   

19.
This article presents the designs of dual‐polarized dual wideband textile‐based two and four elements multiple‐input multiple‐output (MIMO) antennas for WLAN (IEEE 802.11a/b/g/c/n) and WiMAX (IEEE 802.16d) applications. These MIMO antennas cover the frequency spectra from 1.5 to 3.8 GHz (87% bandwidth) and 4.1 to 6.1 GHz (40% bandwidth). The characterization of the textile jeans substrate is determined experimentally using a vector network analyzer and dielectric assessment kit. These antennas provide near about 70% radiation efficiency with around 4 dBi peak gain in desired frequency ranges. The diversity performance is improved noticeably by printing meandered line structures on both planes. The proposed MIMO structure has a very low envelop correlation coefficient (ECC) <0.1 and high diversity gain (DG) >9.9. The Medium effective gain (MEG) also lies within a satisfactory value of ±3 dB. The two elements MIMO Antennas provide linear polarization at all desired frequency band while the four‐element antenna provides circular polarization at 2.4 GHz and linear polarization at 5.2 and 5.8 GHz application bands. The antenna also depicts good performance in wearable condition with safe specific absorption rate < 1.6 W/kg in all desired frequencies.  相似文献   

20.
This article presents a dual polarized, proximity‐fed monostatic patch antenna (single radiator for both transmit and receive modes) with improved interport isolation for 2.4 GHz in‐band full duplex (IBFD) applications. The proximity‐fed radiating patch offers comparatively wider impedance bandwidth for presented design. Very nice self‐interference cancelation (SIC) levels for intended impedance bandwidth have been achieved through differential receive (Rx) mode configuration. The differential Rx mode based on 180° ring hybrid coupler acts as a signal inversion mechanism for effective suppression or cancelation of in‐band self‐interference (SI) that is, the leakage from transmit port. The implemented prototype of proposed antenna achieves ≥87 dB peak isolation for dual polarized IBFD operation. Moreover, the recorded interport isolation for validation model ≥60 dB within 10 dB‐return loss bandwidth of 90 MHz (2.36‐2.45 GHz). The measured radiation characteristics of implemented antenna demonstrate nice gain and low cross‐polarization levels for both transmit (Tx) and receive (Rx) modes. The dimensions of implemented antenna are 70 × 75 × 4.8 mm3. The novelty of this work is wide‐band SIC performance for monostatic antenna configuration with compact structure of presented design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号