首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, a novel resonant series slot linearly polarized antenna is realized using substrate integrated waveguide (SIW) technology for industrial scientific medical radio band (ISM) at 5.8 GHz. The proposed antenna consists of two 24° inclined slots and two metallic vias to produce alternate inductive and capacitive loads. The rectangular slots are introduced at the top metallic surface at an angle of 24° from the Y‐axis to excite a hybrid mode (TE110 + TE120) near to the modified cavity mode TE120. The resonant slots are excited with the help of an inset microstrip feedline which retain its planar integrability. The slots are excited to resonate in the TE120 mode at 5.8 GHz. To enhance the bandwidth, the location of two shorting vias are optimized in proximity to the slots. These vias help to couple the hybrid mode and the cavity modes in the desired frequency band, which leads to enhancement in the bandwidth significantly. The proposed geometry is fabricated and experimentally verified. The measured and simulated results depict a good co‐relation which show measured ?10 dB fractional bandwidth of 5.2% with a maximum gain of 7.15 dBi and the front to back ratio better than 15 dB at 5.8 GHz.  相似文献   

2.
In this article, a substrate integrated waveguide (SIW) antenna utilizing odd‐mode spoof surface plasmon polariton (SSPP) for broadside radiation is proposed. Double gratings are etched on the top surface of SIW and the SSPP odd‐mode is excited on this hybrid SIW‐SSPP structure. The proposed SIW antenna has open‐circuit termination and can realize broadside radiation. A prototype of the SIW‐based odd‐mode antenna is fabricated. Reasonable accordance is achieved between measured results and simulated results. The antenna impedance bandwidth is about 5.5% (12.4~13.1 GHz) with |S11| < ?10 dB. Stable broadside radiation is also realized within the operating band of 12.3~13.3 GHz and the measured gain varies from 5.66 to 6.34 dB in the frequency band. The proposed broadside radiation antenna is suitable for wireless communication systems due to its compact structure and good radiation performances.  相似文献   

3.
A method to enhance the gain of substrate integrated waveguide (SIW) beam scanning antenna is proposed in this article. 2 × 2 SIW cavity‐backed sub‐arrays are employed in array design. The antenna is constructed on two layers. The top layer places four SIW cavity‐backed sub‐arrays as radiating elements and the bottom layer is an SIW transmission line to feed the sub‐arrays. Beam scanning feature can be obtained due to the frequency dispersion. Moreover, through separating radiators to the other layer and using 2 × 2 SIW cavity‐backed sub‐arrays as radiating parts, the antenna gain is improved significantly. For a linear array, 4.1 to 6.8 dB gain enhancement is achieved compared to a conventional SIW beam scanning antenna with the same length. Then, the linear array is expanded to form a planar array for further gain improvement. A 64‐element planar beam scanning array is designed, fabricated, and tested. Experimental results show that the proposed planar array has a bandwidth from 18.5 GHz to 21. 5 GHz with beam scanning angle from ?5° to 11.5° and gain in the range of 20.5 to 21.8 dBi. The proposed high gain beam scanning antennas have potential applications in radar detection and imaging.  相似文献   

4.
This article presents a triple‐slotted substrate integrated cavity (SIC)‐fed 2 × 2 metasurface antenna. Three modes can be obtained including TM10 mode of the metasurface, TE210, mode and TE310 mode of the SIC. The TE210 mode of SIC radiates through the two side slots and is coupled to the metasurface mainly by the two side slots, while the TE310 mode of SIC is mainly coupled to the metasurface by the middle slot. Comparing with the reported SIC‐backed slot antenna, dual‐slotted SIC‐fed patch antenna or the metasurface antenna, the proposed antenna exhibits the advantage of wide bandwidth with flat gain. One prototype operated at 10 GHz was fabricated and measured with 10‐dB fractional bandwidth of 33%, the gain of 8.1 dBi at the center frequency, the cross polarization level of 20 dB and the gain ripple of 1.5 dB.  相似文献   

5.
In this article, a novel design of compact cavity‐backed slot antenna based on substrate integrated waveguide (SIW) technology is presented for dual‐frequency communication services. A single layer printed circuit board is applied to implement the proposed antenna. The bowtie‐ring slot engraved on the SIW square cavity is excited using two orthogonal microstrip feed lines to operate at two distinct frequencies (6.62 GHz and 11.18 GHz). The proposed antenna allows each of these frequencies to be designed independently. A prototype of the proposed cavity‐backed antenna that radiates at both 6.62 GHz and 11.18 GHz is fabricated and measured. The port isolation better than 29.3 dB is achieved by utilizing the transmission zeros (TZs), which are produced due to the orthogonal feed lines, TE110 mode and coupling between the TE120 and TE210 modes. The measured peak gains of the proposed diplexing antenna are 5.77 dBi and 5.81 dBi at lower and upper resonating frequencies, respectively. The proposed dual‐frequency antenna exhibits the front‐to‐back‐ratio (FTBR) and cross‐polarization level greater than 26 dB and 21 dB, respectively, at both resonating frequencies.  相似文献   

6.
In this article, a novel electrically small eighth‐mode substrate integrated waveguide (EMSIW) based leaky‐wave antenna (LWA) in planar environment is presented. The proposed antenna uses 1/8th mode SIW resonator which helps to improve compactness of the design while maintaining high gain and increased scanning angle. The proposed SIW cavity is excited by a 50 Ω microstrip line feeding to resonate at dominant TE110 mode in X‐band. The dimensions of the resonators are adjusted to keep resonant mode at same frequency. The fabricated prototype is approximately 5λ0 long. Measured results show that the proposed leaky‐wave antenna is able to operate within frequency range of 8‐10 GHz with beam scanning range of 51° and maximum gain of 13.31 dBi.  相似文献   

7.
In this article, a wideband leaky‐wave antenna is designed for consistent gain and wide beam scanning angle by using the proposed multilayered substrate integrated waveguide (SIW) composite right/left‐handed transmission line (CRLH TL). The proposed SIW CRLH structure consists of two parts: an interdigital fingers slot of rotating 45° etched on the upper ground of the SIW, and a rotated parasitic patch beneath the slot. Due to the continuous phase constants change from negative to positive values of the proposed SIW‐CRLH under the balanced condition, the designed LWA can achieves a continuous beam‐scanning property from backward to forward over the operating frequency band. The designed antenna is fabricated and measured, the measured and simulated results are in good agreements with each other, indicating that the designed antenna obtains a measured continuous main beam scanning from backward ?78° to forward +76° over the frequency range from 7.7 to 12.8 GHz with a consistent gain of more than 9.5 dB. Besides, the designed antenna also exhibits a measured 3‐dB gain bandwidth of 45.1% with maximum gain of 15 dB. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:731–738, 2016.  相似文献   

8.
A quarter‐mode (QM) substrate‐integrated‐waveguide (SIW) cavity is designed as a dual‐functional component. By etching three slots, four sub‐cavities are formed and then two of them with the same size are individually fed by a coaxial port. Three resonating frequencies are excited in the single QM SIW cavity. One of them can radiate cavity energy input by these ports into free space, implying a two‐element multiple‐input‐multiple‐output (MIMO) antenna, whereas the other two can transmit energy from one port to the other port, indicating a second‐order bandpass filter. Moreover, antenna isolation and filter bandwidth can be adjusted to a certain degree. A prototype with the overall size of 0.40λ0 × 0.40λ0 × 0.02λ0 has been fabricated. The integrated bandpass filter demonstrates the measured center frequency of 3.8 GHz and operating bandwidth of 32 MHz while the integrated MIMO antenna exhibits the frequency of 3.4 GHz, bandwidth of 67 MHz, port isolation of 18.0 dB, radiation gain of 4.0 dBi, and envelope correlation coefficient of 0.25.  相似文献   

9.
A new design of substrate integrated waveguide (SIW) circularly‐polarized (CP) filtering antenna is presented, which is based on dual‐mode (TE102 and TE201) cavities. The satisfying filtering performance of the antenna is realized by a coupled‐resonator circuit of two dual‐mode SIW cavities. And the radiating element of the antenna is a cavity‐backed CP slot antenna which is formed by a nonuniform ring slot integrated with the back cavity. To demonstrate the idea, a prototype antenna operating at X band is designed, fabricated, and measured. Measured results show that the 10‐dB impedance bandwidth is 4.2% (from 11.6 to 12.1 GHz), the 3‐dB axial‐ratio (AR) bandwidth is 4%, and the gain is 5.6 dBi at the center frequency of 11.8 GHz.  相似文献   

10.
A compact substrate‐integrated‐waveguide (SIW) monopulse slot antenna array with TE20 mode is proposed, manufactured, and tested in this communication. The TE20 mode electric field distribution is used in this antenna design. The phase difference required by the monopulse system is constructed by changing the orientation of the end of the top microstrip feed line. The microstrip line implements not only the feed function, but also the function of a monopulse comparator. The design greatly reduces the size of the monopulse comparator and the feed network, and improves the aperture efficiency of the antenna. Our measurement shows that the operating frequency of the antenna is 10.4 GHz, and the maximum gain of the sum beam is 13.7 dBi, and the difference beam null depth is ?26 dB. The antenna has the advantages of simple structure, small size, and easy integration of planar circuits. This proposed idea can open new ways for monopulse antenna design.  相似文献   

11.
This article presented a substrate integrated waveguide (SIW) cavity‐backed self‐diplexing antenna array with frequency beam scanning characteristic. The proposed array consists of 16 SIW cavity‐backed slot antennas. The SIW cavity‐backed slot antenna can be fed by two separate ports to resonate at two different frequencies and achieve high isolation better than 20 dB between two input ports. The proposed element is a typical self‐diplexing antenna. These cavity‐backed slot antennas are shunt‐fed by a compact 1 to 16 SIW power divider and series‐fed by a set of microstrip lines, respectively. As a result, this array achieves an unidirectional radiation pattern at 10.2 GHz with high gain of 15.10 dBi, and a frequency beam scanning characteristic from 7.0 to 9.0 GHz ranging from ?50° to 46°.  相似文献   

12.
A compact tri‐band multiple‐input‐multiple‐output (MIMO) antenna based on a quarter‐mode slotted substrate‐integrated‐waveguide (SIW) cavity is proposed. By etching a wide slot, a single SIW cavity is divided into two sub‐cavities with the same size. They are fed by coaxial ports to form two MIMO elements and high antenna isolation can be achieved by this slot. To obtain multi‐band operations, two narrow slots are cut in the upper sub‐cavity and the other two slots are etched in the lower sub‐cavity. Three eighth‐mode resonances with different areas can simultaneously occur in these antenna elements. A prototype with the overall size of 0.34λ0 × 0.34λ0 has been fabricated. The measured center frequencies of three operating bands are 2.31, 2.91, and 3.35 GHz, respectively. The measured gain at above frequencies is 4.52, 4.29, and 4.57 dBi, respectively. Moreover, the measured isolation is higher than 16.7 dB within the frequency of interest.  相似文献   

13.
In this article, a novel design of single layer, compact, multiple input multiple output (MIMO) half‐mode substrate integrated waveguide (HMSIW) cavity backed quad element slot antenna with high front‐to‐back ratio (FTBR) is proposed. The proposed antenna consists of four rectangular SIW cavities with semi‐taper radiating slots. The antenna elements are placed in a fashion to achieve high isolation. This antenna is designed for WLAN vehicular communication system to cover the frequency range of 5.84 GHz to 5.96 GHz. It has high front to back ratio (FTBR) of more than 25 dB without using any external metallic reflector. It has more than 37 dB isolation in between orthogonal elements and more than 24 dB in between parallel elements. The envelop correlation coefficient (ECC) and diversity gain are 0.003 and 9.99 dB respectively in between all the elements. Moreover, the antenna has high gain and efficiency of more than 8 dB and 94%, respectively, in 10 dB impedance bandwidth. It can be tuned in a wide range of frequency.  相似文献   

14.
In this article, a new leaky wave antenna (LWA) based on modified substrate integrated waveguide (SIW) is introduced. At first, the modified SIW structure is presented and it is shown that it supports propagation of quasi‐TEM with nearly uniform electric field distribution. Then, a new cell based on diagonal‐shaped slots embedded on top surface of the structure is introduced and its dispersion characteristics and its different radiation regions are determined. A LWA made of 15 unit cells is designed and a prototype of the antenna is fabricated. The proposed LWA is simulated using a software package and its radiation characteristics are also measured. It is shown that a good agreement is obtained between simulated and measured results and two frequency bands are obtained. In the frequency range of 7 GHz to 8.25 GHz, it radiates in forward region with maximum gain of 11.3 dB and scan angles from 54° to end‐fire. In addition, it radiates in backward region from ?70° to broadside from 14 GHz up to 20 GHz with maximum gain of 16.47 dB. High gain, compactness, and wide scan angles are the advantages of the proposed LWA.  相似文献   

15.
This article presents the design and implementation of a single‐layer wideband millimeter‐wave circularly polarized (CP) monopulse cavity‐backed antenna based on substrate integrated waveguide (SIW) technology. The antenna consists of a 2× 8 array of CP cavity‐backed antenna elements, a 90° 3‐dB coupler, power dividers, and phase shifters. In order to enhance the operating bandwidths, the sequential rotation feeding technology is adopted in the design of the monopulse antenna. To validate the proposed concept, a prototype operating at 42 GHz was fabricated and measured. The measured 3‐dB axial ratio (AR) bandwidth for the sum beam can cover a frequency range from 37 to 46 GHz. The measured gain for the sum beam at the center frequency of 42 GHz is 17.5 dBiC, while the null‐depth of the difference beam is measured to be ?36.8 dB. The proposed monopulse antenna has advantages of low‐cost, easy‐fabrication, and easy integration with planar circuits.  相似文献   

16.
A planar substrate integrated waveguide (SIW) based cavity‐backed self‐triplexing slot antenna is proposed for X‐Ku band applications. The antenna comprises of the SIW cavity, radiating slots, and feeding networks. The radiating slots; that are etched on the upper metallic plane of the SIW, are backed up by the three radiated quarter cavities (QCs). The radiating slots in the respective QCs are of different lengths, excited by three separated orthogonal feed lines to resonate at three different frequencies as 11.01, 12.15, and 13.1 GHz. By fine‐tuning the antenna parameters, an intrinsic input port isolation of better than 26 dB is realized which helps in achieving the self‐triplexing property. The behaviors of individual cavity modes at three resonant frequencies are explained with the help of Z‐parameter. The proposed antenna layout is easy to integrate with the planar circuit. The proposed antenna is fabricated and measured results display a close concern with the simulated results. Moreover, a unidirectional radiation pattern and gain of 5.1, 5.54, and 6.12 dBi at resonant frequencies are realized.  相似文献   

17.
This short communication presents a substrate integrated waveguide planar cavity slotted antenna array. The proposed antenna array, excited in its TE33 higher mode, incorporates a grounded coplanar‐waveguide (CPW) CPW‐feeding excitation mechanism. The electromagnetic energy is coupled to the air through 3 × 3 slot array etched on top metallic layer. The proposed antenna operates in the X‐band for the frequency range around the 10 to 11 GHz with resonances at 10.4 and 10.8 GHz frequencies. The proposed antenna array was fabricated and tested. Experimental results show good impedance matching with enhanced radiation characteristics, in terms of peak gain, cross‐polarization level, and low back‐radiation. The proposed antenna has the advantages of low‐footprints, lightweight, high gain, low‐cost, and ease of integration with other electronic circuits. With these characteristics, the proposed antenna array can find its applications in compact wireless digital transceivers.  相似文献   

18.
A substrate integrated waveguide (SIW) circularly polarized (CP) antenna with omnidirectional radiation in the azimuthal plane is proposed. The antenna consists of five identical end‐fire CP antenna elements in a pentagonal array configuration, which is loaded on a circular substrate. Each element contains an H‐plane horn antenna in SIW structure and a printed dipole antenna. Five parasitic curve elements are introduced to improve the omnidirectional property of the antenna. Combined with complementary dipoles theory and SIW technology, prototype antenna is designed, fabricated and measured. With a low profile of 0.024λ0, the antenna has a 10‐dB return‐loss impedance bandwidth of 4.08% (2.4~2.5 GHz) and a 3‐dB axial‐ratio (AR) bandwidth of 5.76% (2.36~2.50 GHz). The antenna works well in the 2.45 GHz ISM band, with good cross‐polarization and excellent omnidirectional property.  相似文献   

19.
A compact double line substrate integrated waveguide (DLSIW) cavity backed antenna is realized using half mode SIW technology for WLAN applications. The existing single line SIW antennas for WLAN applications have low gain and less efficiency. To overcome this limitation, DLSIW structure is proposed. The new DLSIW structure simultaneously achieves better gain, radiation efficiency, and good front to back ratio (FTBR) with compact size. To improve the FTBR, ground extension is made. The size reduction of the proposed design is implemented with half mode SIW topology. The gain and efficiency improved new DLSIW antenna is fabricated using FR4 material and it resonates at 5.27GHz WLAN frequency. The size of antenna is 44 mm × 18.75 mm × 1.6 mm and it has the gain of 5.824 dB. The radiation efficiency and FTBR of the antenna are 69.13% and 13.65 dB, respectively. The design is experimentally tested and compared with earlier WLAN antennas. There is a better accordance between simulated and measured results.  相似文献   

20.
In this article, a filtering antenna array based on substrate integrated waveguide (SIW) is proposed with quasi‐elliptic gain responses for the first time. Two radiation nulls in the gain responses at two sides of the frequency band edges are designed by applying a novel intercavity bypass coupling scheme. First, by carefully analyzing the bypass coupling between the in‐band and out‐of‐band modes in a single oversized TE103 mode cavity resonator, quasi‐elliptic filtering responses are achieved for a two‐output filter. Afterward, those cavity resonators coupled with the two outputs are replaced by cavity‐backed slot antennas to achieve the proposed filtering cavity‐backed slot antenna array. Only one cavity is required in our design to achieve the two transmission zeros and the function of power divider. As a result, the complexity of the proposed filtering antenna array is reduced. A prototype operating at Ka band is designed, fabricated and measured with a center frequency of 28.5 GHz and fractional bandwidth of 1.25%. Similar characteristics can be observed between the gain response of the proposed filtering antenna and the transmission responses of the two‐output filter. The proposed SIW filtering antenna array has great potential to be integrated into millimeter‐wave transceiver modules. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:191–198, 2016.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号