首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
核技术应用产业的迅速发展,对中子辐射屏蔽材料的种类、服役环境、结构性能提出更多、更高要求。针对发展功能/结构一体化中子屏蔽材料需求,研制了一种新型玻璃纤维/B4C/环氧树脂复合材料。力学测试与中子屏蔽实验发现,该复合材料中子屏蔽性能良好,5 cm厚样品屏蔽后中子透射率仅19.6%;材料具有较高强度与模量,性能优于铅硼聚乙烯。增大材料B4C含量对提升材料中子屏蔽性能作用显著,但同时材料强度、模量有一定减小。综合考虑该材料的中子屏蔽性能、承受载荷以及耐高温特性,其在反应堆、加速器及中子源等核设施外围防护材料,尤其是乏燃料贮存格架材料用途上具有较大应用潜力。  相似文献   

2.
利用MCNP5程序构建了屏蔽装置模型,并模拟了聚乙烯、含质量分数10%硼的石蜡、重水、石墨和铅等材料的中子慢化和屏蔽效果,以及铁对γ射线的屏蔽效果。当中子慢化剂聚乙烯的厚度达5 cm时,透过慢化层发射出的中子注量率达到最大值为5.40×10-4m~(-2)s~(-1)。中子屏蔽层含硼石蜡厚度为33 cm并且γ屏蔽层铁厚度为4 cm时,由中子和γ射线产生的年有效剂量之和满足国家标准相关限值要求。  相似文献   

3.
李圆圆  朱常桂  代胜平  杨静 《辐射防护》2013,33(1):26-29,58
对屏蔽材料硼聚乙烯、铅硼聚乙烯进行了γ射线、241 Am-Be源中子的屏蔽性能测试,再用蒙卡软件MCNP对材料的屏蔽测试过程进行模拟分析.结果表明模拟结果与实测值相符很好,实测铅硼聚乙烯对60Co与137Cs的γ射线线衰减系数分别为0.212 cm-1和0.381 cm-1,模拟的线衰减系数为0.209 cm-1和0.370 cm-1;硼聚乙烯对241Am-Be源中子的宏观分出截面计算值与实测值分别为0.197 cm-1和0.193 cm-1,铅硼聚乙烯计算值与实测值分别为0.181 cm-1和0.173 cm-1,说明铅硼聚乙烯对中子和γ射线均具有很好的屏蔽效果,用MCNP软件可模拟屏蔽材料对中子和γ射线的屏蔽性能.  相似文献   

4.
《核技术》2015,(9)
基于252Cf中子源,构建了反应堆结构屏蔽材料屏蔽性能测试装置设计模型。采用MCNP程序建立了测试模型,并逐次模拟计算屏蔽性能测试装置慢化层、中子防护层、γ光子防护层厚度。对于关键的慢化层,采用Geant4程序进一步验证MCNP程序的计算结果。通过分析模拟计算获得了最优屏蔽材料及厚度分别为:慢化层材料为石蜡,厚度为8 cm;中子防护层材料为聚乙烯,厚度为38 cm;γ防护层材料为铁,厚度为11 cm。模拟实验结果表明,所设计屏蔽性能测试装置能够满足中子慢化以及中子、光子防护的需要。  相似文献   

5.
利用MCNP程序,研究了铅硼聚乙烯材料成分、入射中子的能量以及屏蔽材料的厚度对次级γ剂量占总剂量比例的影响。结果表明:随着入射中子能量的增大,次级γ剂量对总剂量的贡献不断降低;随着屏蔽材料厚度的增加,次级γ剂量对总剂量的贡献不断升高,且均受铅硼聚乙烯材料成分的影响。研究结果可供中子源屏蔽设计参考。  相似文献   

6.
在线中子活化分析系统关键参数的蒙特卡罗模拟   总被引:1,自引:0,他引:1  
针对在线瞬发γ中子活化分析(PGNAA)系统的要求,利用MCNP程序对不同慢化材料(重水、石蜡、聚乙烯等)厚度、铅屏蔽厚度、样品厚度及大小进行模拟计算分析。计算结果表明,以厚9cm的石蜡作慢化材料,厚2cm的铅作γ屏蔽层,厚7cm、半径10cm的硫、钙和水泥类样品为最优设计方案,从而为实际设计在线PGNAA系统提供了科学依据。  相似文献   

7.
硼铝复合材料因制备工艺简单,力学性能良好,原材料价格低廉等诸多优点被广泛研究,并被用作诸多领域的热中子吸收材料。本文采用理论计算、MCNP软件模拟、实验测量等多种方法对硼铝复合材料的热中子屏蔽性能进行了评估分析。通过理论计算发现,对于相同配比的硼铝复合材料,从材料的热中子吸收性能方面,添加硼单质的效果优于添加碳化硼。通过MCNP程序模拟计算和实验测量发现,硼铝复合材料对能量低于10-7 MeV的中子吸收效果比较显著。  相似文献   

8.
为满足核电站、乏燃料存储设施等对防护材料的耐温性、热稳定性、耐辐照性能等要求,研制四官能环氧树脂基(AGA型)耐温屏蔽复合材料。首先对基体材料的热稳定性进行分析,由热重分析(thermogravimetric analysis, TG)曲线得到其起始分解温度为353.5 ℃,200 ℃恒温储存170 h后,基体材料失重1.22%。动态热机械性能分析(dynamic thermomechanical analysis,DMA)表明,随着钨(W)含量的增加,AGA型耐温屏蔽复合材料的玻璃化温度向高温区移动并且峰型变宽。用60Co放射源辐照50 kGy剂量,当AGA型耐温屏蔽复合材料的W含量10.5 wt%,B4C含量3 wt%时,其辐照前后冲击强度均为最优。用252Cf中子源测试2 cm厚AGA型耐温屏蔽复合材料的屏蔽性能,当加入3 wt%的B4C时,AGA-4耐温屏蔽复合材料的快中子透射率为50.00%。实验结果表明,AGA型耐温屏蔽复合材料具有一定的耐温性和耐辐照性能,并且密度较小。  相似文献   

9.
《核技术》2015,(12)
针对核电站内高放射性、高湿热、强腐蚀的恶劣物化环境,设计制作了一种新型耐高温环氧树脂基中子屏蔽复合材料。该材料以AFG90-H环氧树脂为基体,在42 k Gy辐照环境下,其玻璃化转变温度可达262oC,弯曲强度仅下降1.63%,中子屏蔽性能明显优于常见高密度聚乙烯(High density polyethylene,HDPE)、石蜡、6002环氧树脂(Epoxy resin,EP)等材料。加入B4C颗粒后,材料中子屏蔽性能和耐高温力学性能得到显著提升,且耐酸碱腐蚀性能保持不变。综合实验表明,该复合材料具有耐高温、耐辐射、耐酸碱腐蚀等优点,且密度小,适合作为移动式探测设备中子屏蔽防护层使用。  相似文献   

10.
利用~(252)Cf中子源产生快中子场和热中子场,对系列不同B_4C含量B_4C-PE复合材料的中子宏观截面进行了实验研究和MCNP模拟计算。结果表明:热中子宏观截面在±5%内相符,快中子宏观截面在±10%内相符;B_4C-PE复合材料对热中子的屏蔽效果明显好于聚乙烯。研究结果可为中子屏蔽材料研发和工程设计提供参考。  相似文献   

11.
用低密度富氢材料作为241Am-Be中子源防护罐屏蔽材料,防护罐尺寸大,屏蔽效率低,不利于现场测井作业。利用蒙特卡罗模拟方法,分别计算多种屏蔽材料对中子的慢化效果,优化设计了中子屏蔽效果好、相对轻便的防护罐。模拟结果得到:针对石油测井常用的18 Ci 241Am-Be中子源屏蔽罐,内层选用钨作为高能快中子的慢化层,厚度取13 cm;外层选用硼聚乙烯作为较低能量快中子慢化和热中子吸收层,厚度取18 cm。防护罐整体尺寸为φ62 cm×62 cm,体积0.187 m3,质量430 kg,比传统石蜡罐直径和重量约小一半,屏蔽罐外辐射剂量率小于0.025 mSv·h-1,符合辐射防护标准要求。  相似文献   

12.
本文基于Monte Carlo粒子输运计算程序SuperMC,计算了四种含硼聚乙烯(B-PE)结构缝隙对两种谱中子的衰减倍数。为了便于比较不同结构缝隙对中子屏蔽性能的影响,统一与相同厚度无缝隙材料相比得到中子衰减倍数相对减小量,并在相同条件下对计算结果进行了实验验证。结果表明:对于厚度6 cm的B-PE材料,斜缝结构的快中子衰减倍数相对减小量为直缝结构的1/8,斜缝结构的慢化中子衰减倍数相对减小量为直缝结构的1/3,斜缝结构对中子屏蔽产生的负面影响最小。  相似文献   

13.
利用Monte Carlo粒子输运计算程序Super MC对厚度1-5 cm的多种材料进行中子反射和屏蔽性能分析计算。这些材料包括金属材料铍、铅、铜、含硼钢以及~(238)U和非金属材料聚乙烯、氢化锂、混凝土,中子能段选取10~(-5) e V-20 MeV。结果显示,中子反射能力和屏蔽性能都会随着材料厚度而增加,但增加的幅度逐渐减小。铍和聚乙烯在中子反射和屏蔽方面性能优越,而常用来屏蔽γ射线的铅在这两方面性能都是8种材料中最差的。~(238)U只在材料厚度很小时性能卓著,随着材料厚度增加,其性能便远不如大部分材料。考虑到聚乙烯的力学性能较差,在屏蔽材料的选择上有很大的限制,所以在8种材料中,铍的综合性能相对较好。  相似文献   

14.
含硼钢对慢中子衰减性能的蒙特卡罗模拟   总被引:1,自引:0,他引:1  
用MCNP4C程序模拟了日本研制的KTA-304含硼钢对0.025eV、1eV、1keV慢中子衰减吸收性能,并与传统的SUS304钢进行对比。在充分考虑生产加工条件及材料的防腐蚀性、热延性等因素下比较得出,硼浓度在1.13%左右的含硼钢具有较好的慢中子吸收能力,可有效降低次级γ射线效应,在达到辐射防护要求下可减少材料厚度。计算了不同含硼浓度下含硼钢对不同能量慢中子的衰减系数,为中子屏蔽材料的选择提供了合理依据。另外,还考虑了对中子俘获过程中放出γ射线的防护。  相似文献   

15.
以硼酸镁(Mg2B2O5)和硼酸铝(Al4B2O9)晶须作为中子吸收体与高密度聚乙烯(HDPE)复合,制备了硼酸盐晶须/HDPE复合材料。讨论了影响材料力学性能及屏蔽性能的因素,并与常用的碳化硼(B4C)屏蔽材料进行了对比。实验结果表明:3种复合材料对热中子的屏蔽效果为B4CMg2B2O5Al4B2O9,复合材料对热中子的屏蔽率均随吸收体含量和材料厚度的增加而增大,当硼酸镁晶须/HDPE复合材料的厚度为15.76mm时,材料对热中子的屏蔽率可达86.58%。晶须/HDPE复合材料的拉伸强度随晶须含量的增加而增大,当硼酸镁晶须的含量为9.1%时,复合材料的拉伸强度可达24.39 MPa,和碳化硼/HDPE复合材料相比,硼酸盐晶须更能增强HDPE基屏蔽材料的力学性能。  相似文献   

16.
为减小D-D加速器中子源的体积和质量,本文结合遗传算法和MCNP程序建立了一种针对快中子的优化设计紧凑、轻量化屏蔽材料的方法。基于此方法,设计得到了一系列材料样本,采用MCNP程序模拟了各材料对D-D中子的屏蔽性能,并与传统材料PB202、PE-30%B、M-L1、M-L2进行了对比。为直观比较屏蔽材料的性能,假设加速器生物屏蔽体为同轴渐缩圆柱体结构,对不同材料所需体积及质量进行了对比,结果显示,SDGa性能较好,可同时满足紧凑化与轻量化的需求。同时,对SDG3和SDG3*辐照1000 h后的活化伽马剂量率进行了评估,结果显示其活化影响可忽略。  相似文献   

17.
屏蔽材料组分含量的优化设计   总被引:1,自引:0,他引:1  
防辐射材料的屏蔽性能跟材料的组成成分含量是有关的,成分含量不同,屏蔽效果也不同。利用遗传算法,对衰减公式进行优化计算,得出各组分含量的最佳配比。用MCNP程序对几种组分配比的材料进行X射线屏蔽模拟,结果表明利用遗传算法计算出来的配比材料屏蔽效果最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号