首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 290 毫秒
1.
以在渤海服役20年的FPSO为研究对象,分别采用水动力分析软件MOSES和SESAM计算其静水载荷和波浪载荷,进而得到船体所受总纵外载荷。依据《海上浮式装置入级规范》中关于腐蚀速率的规定计算FPSO在计入腐蚀后的船体剖面模数,根据《钢质海船入级与建造规范》中的相关规定,对FPSO在运营不同年限后的总纵强度进行校核,同时提出了改造加强的建议。校核结果表明:该船目前的总纵强度满足规范要求。  相似文献   

2.
由于作业方式不同,用于计算FPSO与不限定航线条件下船舶设计载荷的规范计算公式不一样,如何将现有的关于普通海船的规范用于FPSO的设计评估是FPSO研究中的关键问题。基于现有常规钢质海船规范,文章采用环境烈度因子(ESF)对用于计算运营于无限航区船舶设计载荷的规范公式进行修正,将修正后的公式作为FPSO设计载荷的计算公式。利用所得FPSO载荷计算公式计算某30万吨FPSO设计载荷,并采用薄壁梁理论对船体梁强度进行校核。将校核结果与未经ESF修正的船体梁校核结果进行比较,发现未经ESF修正的船体梁校核结果明显偏大。同时,采用薄壁梁理论进行船体梁剪切强度评估,可以避免建立全船有限元模型。  相似文献   

3.
由于作业方式不同,用于计算FPSO与不限定航线条件下船舶设计载荷的规范计算公式不一样,如何将现有的关于普通海船的规范用于FPSO的设计评估是FPSO研究中的关键问题.基于现有常规钢质海船规范,文章采用环境烈度因子(ESF)对用于计算运营于无限航区船舶设计载荷的规范公式进行修正,将修正后的公式作为FPSO设计载荷的计算公式.利用所得FPSO载荷计算公式计算某30万吨FPSO设计载荷,并采用薄壁梁理论对船体梁强度进行校核.将校核结果与未经ESF修正的船体梁校核结果进行比较,发现未经ESF修正的船体梁校核结果明显偏大.同时,采用薄壁梁理论进行船体梁剪切强度评估,可以避免建立全船有限元模型.  相似文献   

4.
以某单壳油船改造的双舷侧散货船为例,按照CCS《双舷侧散货船结构强度直接计算指南(2004)》要求,对船体屈服和屈曲强度进行直接计算分析。结果表明,该船的改造设计方案是可行的,各种构件的屈服强度和板格屈曲强度基本可以满足规范要求。  相似文献   

5.
文章基于Smith法,根据国际船级社协会发布的2013版协调共同结构规范(HCSR)中破损模型、失效模式和载荷模型,考虑材料屈服、结构单元屈曲及后屈曲的特性,应用FORTRAN程序设计语言编写船体极限强度计算程序,以某76000吨散货船为算例,对完整船体的极限强度进行计算,对搁浅状态下破损船体的剩余强度进行计算并校核承载能力。通过在中拱和中垂工况下与其他规范的对比验证,2013版HCSR指定的剩余强度校核公式及船体梁载荷计算公式中选取的安全系数要求更高,校核更严格。  相似文献   

6.
针对不适用规范公式计算船体波浪载荷的特殊船型,以一艘浮式生产储油船(FPSO)为例,介绍了一种长期预报设计波法,使用该设计波法确定了FPSO的波浪载荷长期预报极值和设计波波浪参数。同时,与规范计算公式及非线性修正后得到的波浪载荷进行比较分析。最后,利用设计波载荷计算结果,对该FPSO的船体结构强度进行评估。分析结果表明,使用长期预报设计波法计算FPSO的波浪载荷具有一定的合理性,其船体结构强度符合规范要求。  相似文献   

7.
FPSO延期服役评估方法   总被引:1,自引:0,他引:1  
对达到设计使用年限的FPSO进行报废,将给船东带来巨大的经济损失,因此,对达到设计使用年限的FPSO进行评估,并制订相应的改造方案,使其满足继续服役的要求,成为了船东的最佳选择。决定FPSO使用年限的主要就是船体结构,FPSO延期服役评估主要针对FPSO船体结构进行现场勘验、无损检测、数据采集、计算、分析、改造设计等工作,使其满足船级社相关规范要求,达到延长服役期限的目的。  相似文献   

8.
2013版HCSR对极限强度和船体梁载荷计算的诸多安全系数和公式做出了新的修正。第五章船体梁强度新增加针对船体梁剩余强度的计算和校核。本文基于Smith法,根据2013版HCSR中船体梁载荷计算公式和极限强度计算流程的规定,考虑材料屈服、结构单元屈曲及后屈曲的特性,应用Fortran程序设计语言编写船体极限强度计算程序,以某76 000 t散货船为例,对完整船体的极限强度进行计算,对碰撞状态下破损船体的剩余强度进行计算并校核承载能力。通过对比ABS和DNV规范中的碰撞模型,2013版HCSR指定的剩余强度校核公式及船体梁载荷计算公式中选取的校核公式更严格。  相似文献   

9.
UR-S11A对大型集装箱船结构设计的影响研究   总被引:1,自引:1,他引:0  
国际船级社协会针对集装箱船的新标准UR-S11A已于2016年7月1日正式生效,其对大型集装箱船结构设计的具体影响值得研究。以一艘13 500 TEU集装箱船为例,首先分析了UR-S11A相比UR-S11和劳氏船级社(LR)规范在强度校核上的差异,然后通过对总纵屈服强度、屈曲强度和极限强度的研究分析了新标准对船体结构的影响。结果表明,UR-S11A对在0.3~0.4船长处船体梁的总纵弯曲和极限强度的要求更高,部分纵舱壁板与外板的剪切和屈曲强度以及双层底桁材纵骨的屈曲强度受新规范影响较大。  相似文献   

10.
介绍了基于DNV规范对一艘40万吨矿砂船的结构强度进行有限元分析.应用DNV的Sesam和Nauticus Hull软件对该船屈服、屈曲强度进行分析评估,并依据结果对船体结构型式和尺寸进行了优化和加强.其分析结果与加强方案对超大型矿砂船结构的强度分析具有一定的参考价值.  相似文献   

11.
Global strength is a significant item for floatingproduction storage and offloading (FPSO) design, and steel weightplays an important role in the building costs of FPSO. It is the maintask to consider and combine these two aspects by optimizing hulldimensions. There are many optional methods for the globalstrength analysis. A common method is to use the ABS FPSOEagle software to analyze the global strength including the rulecheck and direct strength analysis. And the same method can beadopted for the FPSO hull optimization by changing the depth.After calculation and optimization, the results are compared andanalyzed. The results can be used as a reference for the futuredesign or quotation purpose.  相似文献   

12.
为双船法(Twin Marine Lifter,TML)联合起重拆解大型海上油田设施设计一种可调节气隙的支撑结构,该结构便于安装和拆卸,对施工船舶的船体吃水性能要求低。建立支撑结构的有限元模型,进行强度校核和屈曲校核,给出支撑结构的应力分布和各杆件利用率。设计方案和分析方法可为拆解大型海上结构物专用装备的设计提供参考。  相似文献   

13.
The dynamic buckling of the main deck grillage would result in the total collapse of the ship hull subjected to a far-filed underwater explosion. This dynamic buckling is mainly due to the dynamic moment of the ship hull when the ship hull experiences a sudden movement under impact load from the explosion. In order to investigate the ultimate strength of a typical deck grillage under quasi-static and dynamic in-plane compressive load, a structure model, in which the real constrained condition of the deck grillage was taken into consideration, was designed and manufactured. The quasi-static ultimate strength and damage mode of the deck grillage under in-plane compressive load was experimentally investigated. The Finite Element Method (FEM) was employed to predict the ultimate strength of the deck grillage subjected to quasi-static in-plane compressive load, and was validated by comparing the results from experimental tests and numerical simulations. In addition, the numerical simulations of dynamic buckling of the same model under in-plane impact load was performed, in which the influences of the load amplitude and the frequency of dynamic impact load, as well as the initial stress and deflection induced by wave load on the ultimate strength and failure mode were investigated. The results show that the dynamic buckling mode is quite different from the failure mode of the structure subjected to quasi-static in-plane compressive load. The displacements of deck edge in the vertical direction and the axial displacements are getting larger with the decrease of impact frequency. Besides, it is found that the dynamic buckling strength roughly linearly decreased with the increase of initial proportion of the static ultimate strength P0. The conclusions drawn from the researches of this paper would help better designing of the ship structure under impact loads.  相似文献   

14.
采用非线性有限元法对中拱和中垂工况条件下碳纤维增强聚合物(Carbon Fiber Reinforced Polymer, CFRP)修复的浮式生产储卸油装置(Floating Production Storage and Offloading, FPSO)点蚀船体梁极限强度进行仿真分析。对比FPSO的完整船体梁、点蚀船体梁和CFRP修复的点蚀船体梁的中拱极限弯矩和中垂极限弯矩,分析CFRP对FPSO点蚀船体梁的修复效果,并分析胶层失效规律。结果表明,CFRP可为船舶的高效修复提供一种新的方式。  相似文献   

15.
分析复杂载荷作用下船体板格结构屈曲强度的影响因素,基于ANSYS软件APDL模块参数化建模,对这些因素进行相关性分析,排除无关参数,保留有关参数,得到屈曲强度的定性表达式。然后变更有关参数,得到不同的有限元模型,通过计算得到不同模型下的屈曲强度,分析大量数据,最终得到屈曲强度的定量表达式。该公式可以在工程上用于复杂载荷作用下船体板格结构的屈曲评估,具有重要的实用价值。  相似文献   

16.
余磊  任慧龙  余洋喆 《船舶工程》2017,39(S1):58-62
疲劳破坏是船舶与海洋工程结构破坏的主要模式之一。多年来,船舶结构的疲劳断裂问题一直是造船界广泛关注的问题[1]。对于由大型油船改装而成的FPSO而言,预测并延长其服役寿命是很关键的。本文通过谱分析法对船体疲劳损伤度进行计算,分别对油船和FPSO阶段进行计算从而得到FPSO剩余疲劳寿命。通过建立3D有限元模型,采用热点应力方法来确定评估处应力传递函数,分别计算各个短期海况损伤度并通过线性叠加来计算总的损伤度以及剩余疲劳寿命。根据疲劳评估结果,更加高效地实施船体结构的检测及维修。  相似文献   

17.
Structures of ultra large container ships (ULCS) are characterized by large deck openings and low torsional rigidity. It is essential to comprehensively figure out their collapse behaviors under pure torsion with both model experiments and numerical simulations, making an evaluation of their ultimate torsional strength. In this paper, a similar scale model of a 10,000TEU container ship has been designed and manufactured first, in which both geometric similarity and strength similarity are taken into account. Next the collapse behaviors of the test model are detailedly illustrated with both experimentally and numerically obtained results. Then discussions on warping or shear buckling deformations involved in the collapse process of the structure are conducted with extended numerical simulations. Finally, the ultimate torsional strength of the true ship is evaluated according to the similarity theory. Results show that it is the yielding and shear buckling of the side shells that causes the failure of the hull girder under pure torsion. Further nonlinear finite element analysis demonstrates that it may either have warping or shear buckling deformations in the torsional collapse process of the hull girder with a large deck opening, depending on the local rigidity distribution of side shells, which has a significant effect on the ultimate torsional strength of the hull girder.  相似文献   

18.
1 Introduction1 The permanent aim is that the ship designers try to optimize the ship structure to improve the strength of hull. The traditional design of ship structure avoiding damage is involved with many transverse bulkheads set up in the ship in orde…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号