首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 515 毫秒
1.
弥散型燃料广泛应用于高温气冷堆、事故容忍燃料、实验研究堆及核动力舰船等,是重要的燃料类型之一。弦长抽样(CLS)方法可简化弥散燃料几何建模,提高计算效率,然而传统CLS方法只能描述单种颗粒的填充,同时在高体积填充率时误差较大。针对CLS方法的两大问题,本文在自主化堆用蒙特卡罗程序RMC中开发了改进CLS方法,并应用于全陶瓷微胶囊封装燃料棒算例及含毒物颗粒的高温堆燃料球算例。计算结果表明,改进CLS方法可解决多种颗粒混合填充的问题,并且可保证体积填充率的准确性,为弥散燃料的临界及燃耗计算提供了高效、精确的方法。  相似文献   

2.
弥散颗粒燃料元件中燃料颗粒以随机形式弥散在基体中,难以获得确定几何。同时由于共振自屏现象的存在,呈现出一种双重非均匀系统。当前均匀系统产生的共振积分在双重非均匀系统中使用时,会在较低的共振能群产生一定的共振计算误差。为满足现有组件计算程序直接进行双重非均匀性共振计算的需求。基于Sanchez-Pomraning模型下的特征线固定源计算方法,建立一套双重非均匀共振积分表,最后结合子群方法实现随机介质燃料元件的共振计算。数值结果表明,考虑双重非均匀性产生的积分表,在相同的输运条件下和积分表的适用范围内,由子群共振部分对keff计算带来的绝对偏差能保持在200 pcm内。该工作的意义是对于一些不宜改动的传统组件程序,如HELIOS,通过在线修改共振积分表和子群参数,从而使其直接进行弥散颗粒燃料问题的计算成为可能。  相似文献   

3.
弥散燃料与弥散可燃毒物由于具有双重非均匀性,采用传统体积均匀化方法(VHM)会带来较大的计算偏差。反应性等效物理转换(RPT)方法被应用于含弥散燃料的双重非均匀系统,具有方法简单且计算精度较高的特点。本文首先对传统RPT方法和改进RPT(IRPT)方法进行了分析和验证,结果表明,这2种方法对于含有弥散可燃毒物的双重非均匀系统燃耗过程中依然存在相对较大的计算偏差;然后提出环形RPT(RRPT)方法和2步环形RPT(TRRPT)方法分别用于处理含单一颗粒类型和含2种颗粒类型的双重非均匀系统,通过含不同类型可燃毒物的算例验证并与蒙卡颗粒模型基准解对比可知,本文提出的RRPT方法和TRRPT方法可用于处理含弥散燃料和弥散可燃毒物的双重非均匀系统,相比传统方法具有更高计算精度和更广适用范围。   相似文献   

4.
耐事故燃料双重非均匀性RPT方法研究   总被引:1,自引:0,他引:1  
采用体积均匀化方法计算含有弥散燃料或弥散可燃毒物的双重非均匀性的系统会带来一定的计算偏差。传统反应性等效物理变换方法(Reactivity-equivalent Physical Transformation,RPT)可以用来处理弥散燃料以及吸收截面随燃耗变化不剧烈的可燃毒物,但对于硼等吸收截面随燃耗变化剧烈的可燃毒物,传统RPT方法也会带来较大的计算偏差。本文对新型RPT方法进行了初步探索,使其不仅适用于传统RPT方法适用的弥散燃料和弥散可燃毒物类型,也适用于硼等吸收截面随燃耗变化相对剧烈的可燃毒物,为RPT方法的扩展和应用提供思路和借鉴。  相似文献   

5.
弥散燃料因具有燃耗深、包容裂变产物能力强和导热性好等优点而被广泛应用于新型核能系统设计中。然而,弥散燃料因其燃料颗粒在基体材料中的随机分布特性给传统中子输运模拟方法带来了新挑战。基于弦长抽样法发展了弥散燃料蒙特卡罗中子输运计算方法和数值模拟程序,其可以实现弥散燃料的在线建模,充分考虑中子输运过程中燃料颗粒在基体材料中的随机分布特性,快速获得准确可靠的中子输运模拟结果。利用数值例题对本文方法及程序开展了基准验证,证明了本文方法及程序在弥散燃料临界计算中的正确性。   相似文献   

6.
采用传统均匀打混模型计算具有双重非均匀性的弥散燃料或可燃毒物会带来一定的计算偏差。从双重非均匀处理判定公式出发,分析弥散燃料或可燃毒物均匀打混模型计算偏差与各因素的关系,指出针对较高富集度或较大颗粒尺寸的燃料,以及相对较大尺寸可燃毒物颗粒,采用传统均匀打混模型会带来较大的计算偏差。RPT方法可以用来处理弥散燃料以及吸收截面不太大的可燃毒物,但对于硼和钆等吸收截面较大的毒物,RPT方法也会带来较大的计算偏差,同时对新型RPT方法进行了初步探索,虽依然不适用强吸收可燃毒物颗粒,但可以为RPT方法向强吸收体可燃毒物扩展提供思路和借鉴。  相似文献   

7.
为实现长寿期压水堆的低硼运行,对颗粒弥散可燃毒物进行了中子学设计与分析,颗粒弥散可燃毒物的自屏效应可通过颗粒半径进行调节,能实现可燃毒物消耗和燃料燃耗的较优匹配。本文选取目前压水堆常用的快燃耗可燃毒物B、Gd为对象,研究了颗粒弥散可燃毒物不同颗粒半径和填充份额对组件中子学特性的影响。结果表明,颗粒弥散可燃毒物能实现长期稳定的反应性控制,其中BISO含硼弥散颗粒符合长寿期压水堆低硼运行的要求,适合作为长寿期压水堆的候选可燃毒物进行下一步研究。  相似文献   

8.
弥散颗粒燃料是一种先进的燃料元件形式,双重非均匀性是它的固有特性。本文基于弥散型燃料,使用MCNP程序对不同燃料颗粒直径、燃料富集度、燃料相体积、可燃毒物颗粒直径和可燃毒物类型的板栅元进行了分析,研究了双重非均匀性对中子学计算的影响,指出双重非均匀性在一定的尺寸下,对于纯燃料芯体板栅元影响较小,对含有弥散可燃毒物的板栅元影响较大,在反应性计算、临界安全分析时必须加以考虑。  相似文献   

9.
弥散型燃料元件等效热传导系数的有限元模拟   总被引:2,自引:0,他引:2  
弥散型燃料元件的热传导与燃料颗粒的数量、形状、大小及其分布,以及元件的几何形状和堆芯内热工条件等密切相关.采用细观计算力学的方法,按照燃料颗粒不同的排布方式从整个元件中取出单胞和代表体积单元,运用有限元法计算了弥散型燃料元件在不同温度、燃耗和颗粒体积含量下的等效热传导系数,并和理论公式进行了比较.结果表明,计算值和MaxweU模型的理论值最为接近.  相似文献   

10.
弥散型燃料等效弹性性质的有限元模拟   总被引:1,自引:0,他引:1  
弥散型核燃料元件在反应堆中的安全和可靠性与元件芯体的等效力学性能密切相关.本研究采用细观力学的方法,假设芯体中的燃料颗粒在基体中周期性排列,从中取出代表性体积元,运用有限元方法计算弥散型燃料在不同温度和颗粒体积含量下的等效弹性模量.分析比较了颗粒的体积含量和分布形式对弥散型燃料等效弹性性质的影响,并在颗粒随机排列时,将...  相似文献   

11.
为提高确定论全堆芯中子输运程序的适用性,开发了通用型中子输运程序 VITAS。针对TAKEDA3 基准题(矩形组件)、TAKEDA4 基准题(六角形组件)、Dodds 基准题(R-Z 几何)和 C5G7-TD5 基准题(压水堆高保真计算)的验证结果表明,高阶的空间和角度基函数能够使结果稳定地向参考解渐进收敛,达到与多群蒙卡相当的计算精度水平。与参考解相比,TAKEDA3 基准题有效增殖系数(keff)偏差低于 60pcm(1pcm=10-5),控制棒价值偏差为-3pcm,中子通量密度分布均方根(RMS)偏差为 1.03%;TAKEDA4 基准题 keff偏差低于 20pcm,控制棒价值偏差为 32pcm,中子通量密度分布 RMS 偏差为 0.70%;Dodds 基准题的功率最大偏差低于 1%;C5G7-TD5 基准题的功率偏差低于 0.9%。本文研究表明 VITAS 有望成为一套精确求解中子输运问题的通用型计算工具。  相似文献   

12.
基于NECP-X程序中已经研发的全局-局部耦合共振计算方法,研究了针对非棒状几何燃料的共振计算方法。首先,采用中子流方法计算真实问题的丹可夫修正因子,以处理全局的空间效应;其次,基于丹可夫修正因子等效获得小规模问题周围慢化剂的几何信息;最后,对于小规模问题燃料区的有效自屏截面的计算采用共振伪核素子群方法。将该方法应用于非棒状几何燃料数值计算,结果表明,该方法在处理非棒状几何燃料栅元的共振计算时,与蒙特卡罗结果程序相比,微观吸收截面偏差不超过1.8%,无限介质增殖因数偏差不超过110 pcm(1 pcm=10-5),具有较高的计算精度;在大规模问题的计算中,基于板状燃料的JRR-3M实验堆全堆在整个燃耗过程有效增殖因数偏差均在300 pcm左右,组件功率偏差在整个燃耗过程不超过0.62%。因此,本研究提出的共振计算方法具有较高的正确率和精度。   相似文献   

13.
全陶瓷微密封(FCM)燃料是一种弥散颗粒燃料。由于弥散颗粒燃料存在双重非均匀性,传统的确定论方法及蒙特卡罗方法皆难以处理这种双重非均匀效应以获得有效多群截面。本文基于超细群方法建立FCM燃料的有效多群截面计算方法。为描述燃料棒内TRISO颗粒的非均匀性,在共振能量段,通过采用超细群方法求解包含TRISO颗粒的一维球模型得到超细群缺陷因子,通过超细群缺陷因子修正所有核素的超细群截面即可将颗粒和基质均匀化。由于TRISO颗粒在热能区也存在较强的自屏效应,在热能区,利用穿透概率及碰撞概率等价得到多群缺陷因子,通过多群缺陷因子修正所有核素的多群截面将燃料和基质均匀化。均匀化后的FCM燃料组件即可视为普通压水堆燃料组件进行共振计算。利用丹可夫修正因子等价得到FCM燃料组件各燃料棒的等效一维棒模型,对一维棒模型求解超细群慢化方程从而得到共振能量段的有效自屏截面。数值结果表明,该方法能有效处理FCM燃料的双重非均匀性,得到精确的有效自屏截面。  相似文献   

14.
针对各种研究堆、实验堆以及新型反应堆中广泛应用的复杂几何燃料的共振计算难题,本文基于全局 局部耦合策略开展了可处理复杂几何燃料的等效几何共振计算方法研究。针对复杂几何燃料的孤立问题,基于燃料的逃脱概率守恒,建立了复杂几何燃料模型的等效一维圆柱(或平板)燃料模型;基于燃料到外围结构材料区的碰撞概率守恒,获得了燃料外围结构材料的等效尺寸;根据复杂几何燃料的丹可夫因子守恒,建立了等效一维圆柱(或平板)燃料外围的慢化剂尺寸;针对等效一维圆柱(或平板)燃料模型,采用伪核素子群方法进行了有效自屏截面计算。将该方法应用于非棒状几何燃料的共振计算,结果表明,该方法具有很强的几何处理能力,且具有较高的计算精度和计算效率。  相似文献   

15.
环形燃料零功率反应堆是首个双面慢化环形燃料作为核燃料的反应堆。本文采用周期法、落棒法获取环形燃料零功率反应堆的临界参数、控制棒价值、元件价值、含Gd元件的反应性效应等关键参数,对环形燃料零功率反应堆的物理性能进行实验研究,验证环形燃料反应堆堆芯物理设计计算程序。结果表明:根据外推过程确定堆芯临界装载环形燃料元件96根,实心燃料元件172根,此时keff为1.000 40,堆芯调节棒价值为-247.5 pcm,安全棒价值为-1 358.4 pcm;元件价值与理论值平均偏差为1.3 pcm,含Gd元件反应性效应与理论值平均相对偏差为8.8%。本文结果为环形燃料的工程化设计程序提供关键数据支撑。  相似文献   

16.
单栅元燃耗计算是全堆芯燃耗计算的基础,栅元空间离散对燃耗计算的结果有显著影响。弥散颗粒燃料由于双重非均匀性的存在,空间离散的情况更为复杂。本文基于ALPHA组件程序,分析了颗粒在平源区上归类的宏观离散方案与颗粒内部细分燃耗区的微观离散方案对弥散颗粒燃料燃耗计算的影响。算例包括无毒物的UC颗粒单栅元,含Gd2O3层的QUADRISO颗粒单栅元和含UC颗粒与Gd2O3毒物颗粒的双颗粒单栅元。数值结果表明,无毒物栅元宏观需分3圈以上,含Gd2O3栅元宏观需分5圈以上;无毒物算例微观不需要分圈,含Gd2O3层的QUADRISO颗粒需在微观燃料区细分2圈,双颗粒问题的Gd2O3毒物颗粒微观需分12~15圈。  相似文献   

17.
SARAX-FXS程序是基于确定论方法,适用于快谱堆芯组件能谱、均匀化参数计算的程序。由于快堆中组件空间自屏的非均匀效应不可忽视,本文将基于一维圆柱、平板几何的碰撞概率方法加入SARAX-FXS模块,并以等效一维模型计算组件的均匀化参数。为保证能群归并前后的核反应率守恒,在组件计算中引入超级均匀化(SPH)因子修正截面。采用快堆基准题MET-1000对程序的计算结果进行验证,结果表明,与参考解相比,SARAX-FXS的一维计算模块具有较高的精度,特征值计算相对偏差在100~200pcm之间。堆芯计算结果显示,引入SPH因子可提高特征值计算的精度约300pcm,功率分布的均方根误差可从约3%下降至约1%。  相似文献   

18.
组件替换反应性价值定义为测量位置组件替换成相应组件时引入的反应性变化。中国实验快堆物理启动试验中组件替换反应性价值测量试验方案中,试验测量了8个典型位置,其中6个位置为燃料组件替换成不锈钢组件,另外两个为不锈钢组件替换成燃料组件。测量结果显示,燃料组件替换反应性价值由内至外依次减少,内圈燃料组件替换反应性价值约-980 pcm,外圈燃料组件替换反应性价值约-470 pcm,补偿棒棒组测量和单根补偿棒测量的结果差别微小。使用CITATION程序对试验方案进行了理论计算,结果表明,计算结果与实验值符合良好,检验了CITATION程序的工程设计实用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号