首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
试验材料为厚2mm的6111铝合金,利用ZWIKE100KN高温材料试验机对该材料在350~550℃,0.1~10s-1应变速率下进行热拉伸试验.结果表明:受位错密度的影响,6111铝合金的流变应力随温度的升高而降低,随应变速率的增大而增大;可以分为应变硬化和饱和稳态流变两个阶段.基于Voce饱和外推模型(H-S模型)构建以温度、应变、应变速率为变量因素的6111铝合金流变应力本构模型,通过回归拟合试验数据求解模型中的参数.试验数据与计算该模型得到的预测曲线吻合较好,验证了该模型的可行性.  相似文献   

2.
《铝加工》2021,(3)
采用Gleeble-3500型热压缩试验机研究了变形态2219铝合金在应变速率为0.25~0.8 s-1、变形温度为420~500℃时的流变应力行为,建立了变形态2219铝合金高温塑性变形时的基于应变补偿的双曲正弦本构方程。结果表明:变形态2219铝合金的流变应力随变形温度的升高而降低,随应变速率的提高而增大。基于应变补偿的本构模型能更好地预测变形态2219铝合金的高温流变行为,实验值与预测值的平均相对误差为4.56%。  相似文献   

3.
 采用Gleeble-3500热模拟试验机对55SiMnMo贝氏体钢进行了热压缩试验,得到了其在变形温度为950~1150℃和应变速率为0.01~10s-1条件下的高温流变应力行为。试验结果表明,峰值应力随变形温度的降低和应变率的提高而增大;当应变速率为0.01和0.1s-1,变形温度t ≥1000℃时,发生动态再结晶。基于试验结果,充分考虑了热变形工艺参数(应变、应变速率和变形温度)对流变应力的影响,建立了一种考虑应变速率补偿的高温流变应力本构方程。通过对该本构方程预测得到的流变应力值和试验值对比,验证了模型的准确性。  相似文献   

4.
7085铝合金热变形的流变应力行为和显微组织   总被引:1,自引:0,他引:1  
采用Gleeble-1500热模拟机进行热压缩实验,研究7085铝合金在变形温度为350~470℃、应变速率为0.001~1 s?1条件下的流变应力变化规律和变形后的显微组织。研究表明:7085铝合金的流变应力随应变速率增大而增大,随变形温度升高而减小。该合金热压缩变形的流变应力行为可用双曲正弦形式的本构方程描述为ε=A[sinh(ασ)]nexp(?Q/RT),也可用Zener-Hollomon参数来描述,其参数A、α、n以及热变形激活能Q分别为2.722 54×1011s?1、0.016 03 MPa?1、6.259以及176.58 kJ/mol。随着温度升高和应变速率降低,合金的主要软化机制由动态回复逐渐转变为动态再结晶。  相似文献   

5.
针对TiNiFe形状记忆合金,在Gleeble-3500热模拟试验机上对其进行了高温压缩实验,研究了TiNiFe合金在温度为750~1050℃、应变速率为0.01~10.00 s-1条件下的热变形行为。结果表明,流变应力受到变形温度和应变速率的显著影响,在相同变形温度条件下,流变应力随应变速率的提高而增大;在相同应变速率条件下,流变应力随变形温度的升高而降低。并采用双曲正弦模型确定了该合金的应力指数n和变形激活能Q,建立了相应的热变形本构关系。经实验验证,所建立的本构关系能够很好的反映TiNiFe合金的实际热变形行为特征。  相似文献   

6.
在Gleeble-3180热模拟机上对碳化硅颗粒增强铝基(SiCp/2014Al)复合材料进行热压缩试验,研究其在变形温度为350,400,450 ℃和500 ℃,应变速率为0.001,0.01,0.1s-1和1.0 s-1条件下的热变形行为。根据热压缩实验的真应变-真应力数据,在考虑应变、应变速率和变形温度对流动应力的耦合影响下构建修正的Johnson-Cook(JC)本构模型,同时建立人工神经网络模型(ANN)。结果表明:SiCp/2014Al复合材料的流变应力随应变速率的增加和温度的降低而增大。与修正的JC模型相比,ANN模型具有较低的均方根误差(0.51 MPa)和平均绝对误差(1.43%),以及较高的相关系数(0.999 7),表明其对SiCp/2014Al复合材料热变形流变应力的预测具有更高的预测精度和可靠性。   相似文献   

7.
为了解决Cr20Ni80电热合金锻造开裂的问题,在Gleeb-1500D热模拟试验机上对该合金进行热压缩试验,研究变形温度为900~1220℃,应变速率为0.001~10 s-1条件下的热变形行为,并根据动态材料模型建立合金的热加工图.合金的真应力-真应变曲线呈现稳态流变特征,峰值应力随变形温度的降低或应变速率的升高而增加;热变形过程中稳态流变应力可用双曲正弦本构方程来描述,其激活能为371.29 k J·mol-1.根据热加工图确定了热变形流变失稳区及热变形过程的最佳工艺参数,其加工温度为1050~1200℃,应变速率为0.03~0.08 s-1.优化的热加工工艺在生产中得到验证.  相似文献   

8.
利用Gleeble-1500热模拟实验机,对2524铝合金进行高温等温压缩试验,实验变形温度为300~500℃,应变速率为0.01~10 s-1的条件下,研究了2524铝合金的流变变形行为。结果表明:合金流变应力的大小跟变形温度和应变速率有很大关联,2524铝合金真应力-应变曲线中,流变应力开始随应变增加而增大,达到峰值后趋于平稳,表现出动态回复特征,而峰值流变应力随变形温度的降低和应变速率的升高而增大;在流变速率ε为10 s-1,变形温度300℃以上时,应力出现锯齿波动,合金表现出动态再结晶特征。采用温度补偿应变速率Zener-Hollomon参数值来描述2524铝合金在高温塑性变形流变行为时,其变形激活能Q为216.647 kJ/mol。在等温热压缩形变中,合金可加工条件为:高应变速率(>0.5 s-1)或低应变速率(0.01 s-1~0.02 s-1)、高应变温度(440℃~500℃)。  相似文献   

9.
采用真空热压烧结法制备了CuW30复合材料,在Gleeble-1500D热模拟机上对该材料进行等温热压缩模拟试验.研究了温度为650~950℃、应变速率为0.01~5 S-1、最大变形量为50%条件下的流变应力行为.结果表明:CuW30复合材料存在明显的动态再结晶特征.材料的稳态流变应力随应变速率的增大而增大,在恒应变速率条件下,合金的真应力水平随温度的升高而降低.热变形过程的流变应力可用双曲正弦本构关系来描述.在给定的变形条件下,计算的热变形激活能为231.150 kJ/mol.根据试验分析,合金的热加工宜在850~950℃范围内进行,应变速率为0.01~0.1 S-1.  相似文献   

10.
利用永磁搅拌近液相线铸造和普通铸造方法制备不同晶粒尺寸的2024铝合金铸锭,利用Gleeble-1500热模拟试验机研究初始晶粒尺寸对不同压缩变形条件下2024铝合金的热变形行为和变形后显微组织的影响。研究表明:2024铝合金的热变形行为依赖于变形条件和初始组织。初始晶粒尺寸对流变应力的影响是:当应变速率小于0.1 s~(-1)时,流变应力随晶粒尺寸减小而减少;当应变速率为10 s~(-1)时,流变应力随晶粒尺寸减小而增大。降低变形温度会弱化晶粒尺寸对流变应力的影响。热压缩流变应力随应变速率增大而增大,随变形温度升高而减小。应变速率为10 s~(-1)时,热压缩应力应变曲线呈现周期性波动;只在粗晶2024铝合金中发现变形剪切带。  相似文献   

11.
对均匀化炉冷态7085铝合金进行高温压缩实验,研究该合金在变形温度为350~450℃、变形速率为0.001~0.1 s 1和应变量为0~0.6条件下的流变应力及软化行为。结果表明:流变应力在变形初期随着应变的增加而迅速增大,出现峰值后逐渐软化进入稳态流变;随着变形温度的升高和应变速率的降低,峰值流变应力降低。采用包含Zener-Hollomon参数的Arrhenius双曲正弦关系描述合金的流变行为。分析和建立了应变量与本构方程参数(激活能、应力指数和结构因子)的关系,研究发现本构方程参数随应变量的增加而减少。合金的流变行为差异与动态回复再结晶和第二相粒子相关。  相似文献   

12.
采用真空感应熔炼法制备了医用Ti-50. 7%Ni合金(原子数分数), 测试了铸态合金的成分、相变点、微观组织和硬度, 并采用Gleeble-3800热模拟实验机在变形温度750~950℃、应变速率0. 001~1 s-1, 应变量为0. 5的条件下对Ni-Ti合金进行高温压缩变形, 分析其流动应力变化规律, 建立了高温塑性变形本构关系和热加工图.结果表明: 当变形温度减小或应变速率增大时, Ni-Ti合金的流动应力会随之增大.应变速率为1 s-1时, 合金的真应力-真应变曲线呈现出锯齿状特征.根据热加工图, 获得了Ni-Ti合金的加工安全区和流变失稳区, 进而确定其合理的热变形温度范围为820~880℃, 真应变速率低于0. 1 s-1.从而为制定镍钛合金的锻造工艺参数提供理论和数据基础.   相似文献   

13.
利用Gleeble-3800热模拟实验机研究了工业纯钛TA2的热变形行为.变形温度为750~1000℃,步长50℃,应变速率分别为0.01、0.1、1和10 s-1.实验结果表明,TA2在热压缩变形过程中发生了加工硬化以及动态回复、动态再结晶.随着变形温度的降低和应变速率的增加,流变应力逐渐增加.为了准确预测TA2的高温流变行为,基于实验数据和双曲正弦Arrhenius模型构建了考虑应变影响的本构方程,本构方程中材料常数α、n、Q、lnA与应变之间存在6阶多项式关系.本文所提出考虑应变影响的本构方程可以用于研究工业纯钛TA2的高温流变行为.   相似文献   

14.
6069铝合金的热变形行为和加工图   总被引:2,自引:0,他引:2  
采用Gleeble-1500热模拟实验机在温度为300~450℃,应变速率为0.01~10 s?1条件下对6069铝合金进行热压缩实验,研究该合金的热变形行为及热加工特征,建立热变形本构方程和加工图。结果表明,6069铝合金热变形过程中的流变行为可用双曲正弦模型来描述,在实验条件下的平均变形激活能为289.36 kJ/mol。真应变为0.7的加工图表明合金在高温变形时存在2个安全加工区域,即变形温度为300~350℃、应变速率为1~10 s?1的区域和变形温度为380~450℃、应变速率为0.01~0.3 s?1的区域。适合加工的条件是变形温度为350℃,应变速率0.01 s?1。  相似文献   

15.
马昕  许斯洋  周舸  丁桦 《中国冶金》2022,32(9):26-36
为获得Ni60Ti40形状记忆合金热变形的最佳工艺参数,利用等温恒速率热压缩试验研究了在温度为800~1 000 ℃、应变速率为0.005~5.000 s-1条件下Ni60Ti40合金的热变形行为,通过探究不同变形温度和应变速率对Ni60Ti40合金流变行为的影响创建本构关系,并以动态材料模型为基础构建热加工图。结果表明,Ni60Ti40合金的流变应力随变形温度的升高而减小、随应变速率的升高而增大。温度为900~1 000 ℃、应变速率为0.005~0.500 s-1时,流变应力较快达到稳态,且所需的变形量较少。采用Arrhenius双曲正弦模型构建的Ni60Ti40合金热变形的流变应力本构关系模型可基本准确地预测实际流变应力随工艺参数的变化趋势,计算得到Ni60Ti40合金的平均热变形激活能为213 kJ/mol。Ni60Ti40合金的热变形有3个稳定变形区和1个失稳区,适宜变形的区域为800~870 ℃/0.005~0.080 s-1、870~950 ℃/0.080~0.500 s-1和950~1 000 ℃/0.050~5.000 s-1;不适合进行热加工的区域为800~850 ℃/0.220~5.000 s-1。  相似文献   

16.
马昕  许斯洋  周舸  丁桦 《中国冶金》2006,32(9):26-36
为获得Ni60Ti40形状记忆合金热变形的最佳工艺参数,利用等温恒速率热压缩试验研究了在温度为800~1 000 ℃、应变速率为0.005~5.000 s-1条件下Ni60Ti40合金的热变形行为,通过探究不同变形温度和应变速率对Ni60Ti40合金流变行为的影响创建本构关系,并以动态材料模型为基础构建热加工图。结果表明,Ni60Ti40合金的流变应力随变形温度的升高而减小、随应变速率的升高而增大。温度为900~1 000 ℃、应变速率为0.005~0.500 s-1时,流变应力较快达到稳态,且所需的变形量较少。采用Arrhenius双曲正弦模型构建的Ni60Ti40合金热变形的流变应力本构关系模型可基本准确地预测实际流变应力随工艺参数的变化趋势,计算得到Ni60Ti40合金的平均热变形激活能为213 kJ/mol。Ni60Ti40合金的热变形有3个稳定变形区和1个失稳区,适宜变形的区域为800~870 ℃/0.005~0.080 s-1、870~950 ℃/0.080~0.500 s-1和950~1 000 ℃/0.050~5.000 s-1;不适合进行热加工的区域为800~850 ℃/0.220~5.000 s-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号