首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Salinity and waterlogging interact to reduce growth of poorly adapted species by, amongst other processes, increasing the rate of Na(+) and Cl(-) transport to shoots. Xylem concentrations of these ions were measured in sap collected using xylem-feeding spittlebugs (Philaenus spumarius) from Lotus tenuis and Lotus corniculatus in saline (NaCl) and anoxic (stagnant) treatments. In aerated NaCl solution (200 mM), L. corniculatus had 50% higher Cl(-) concentrations in the xylem and shoot compared with L. tenuis, whereas concentrations of Na(+) and K(+) did not differ between the species. In stagnant-plus-NaCl solution, xylem Cl(-) and Na(+) concentrations of L. corniculatus increased to twice those of L. tenuis. These differences in xylem ion concentrations, which were not caused by variation in transpiration between the two species, contributed to lower net accumulation of Na(+) and Cl(-) in shoots of L. tenuis, indicating that ion transport mechanisms in roots of L. tenuis were contributing to better 'exclusion' of Cl(-) and Na(+) from shoots, compared with L. corniculatus. Root porosity was also higher in L. tenuis, due to constitutive aerenchyma, than in L. corniculatus, suggesting that enhanced root aeration contributed to the maintenance of Na(+) and Cl(-) 'exclusion' in L. tenuis exposed to stagnant-plus-NaCl treatment. Lotus tenuis also had greater dry mass than L. corniculatus after 56 d in NaCl or stagnant-plus-NaCl treatment. Thus, Cl(-) 'exclusion' is a key trait contributing to salt tolerance of L. tenuis, and 'exclusion' of both Cl(-) and Na(+) from the xylem enables L. tenuis to tolerate, better than L. corniculatus, the interactive stresses of salinity and waterlogging.  相似文献   

2.
Abscisic acid (ABA) moving from roots to shoots in the transpirationstream is a potential hormonal message integrating perceptionof a root stress with adaptive changes in the shoot. A twinroot system was used to study ways of estimating effects ofdroughting the upper roots of Ricinus communis L. on abscisicacid (ABA) transport to the shoot in the transpiration stream.Droughted plants transpired more slowly than controls. Droughtingalso increased concentrations of ABA up to I I-fold in sap inducedto flow from the roots of freshly decapitated plants at ratesof whole plant transpiration. However, because of dilution effectsarising from the different sap flows in control and droughtedplants, these changes in ABA concentration in the xylem sapdid not accurately reflect amounts of ABA transported. To overcomethis problem, delivery rates were calculated by multiplyingconcentration with sap flow rate to generate ABA delivery interms of µmol s–1 per plant. Droughting for 24 hor more increased ABA delivery from roots to shoots by 5-fold.Since droughting can alter the relative sizes of the roots andshoots and also the root:shoot ratio these delivery rates wererefined in several ways to reflect both the amount of root generatingthe ABA message and the size of the recipient shoot system. Key words: Abscisic acid, Ricinus communis L., soil drying, xylem sap  相似文献   

3.
4.
Quinoa is regarded as a highly salt tolerant halophyte crop, of great potential for cultivation on saline areas around the world. Fourteen quinoa genotypes of different geographical origin, differing in salinity tolerance, were grown under greenhouse conditions. Salinity treatment started on 10 day old seedlings. Six weeks after the treatment commenced, leaf sap Na and K content and osmolality, stomatal density, chlorophyll fluorescence characteristics, and xylem sap Na and K composition were measured. Responses to salinity differed greatly among the varieties. All cultivars had substantially increased K+ concentrations in the leaf sap, but the most tolerant cultivars had lower xylem Na+ content at the time of sampling. Most tolerant cultivars had lowest leaf sap osmolality. All varieties reduced stomata density when grown under saline conditions. All varieties clustered into two groups (includers and excluders) depending on their strategy of handling Na+ under saline conditions. Under control (non-saline) conditions, a strong positive correlation was observed between salinity tolerance and plants ability to accumulate Na+ in the shoot. Increased leaf sap K+, controlled Na+ loading to the xylem, and reduced stomata density are important physiological traits contributing to genotypic differences in salinity tolerance in quinoa, a halophyte species from Chenopodium family.  相似文献   

5.
Fluctuations in mineral elements id xylem (tracheal) sap, fruitphloem sap, leaflets and dmloping fruits were studied in a fieldpopulation of Lupinus angustifolius L. by three-hourly samplingover a 39 h period. Elements usually reached maximum contentsor concentrations at or near noon, minimum levels during thenight. Amplitudes of diurnal fluctuations in minerals lay withinthe range ±4–33 per cent of the mean content ofleaflets, and ±17–157 per cent of the mean concentrationsin xylem and phloem sap. Most minerals elements fluctuatcd inphase with daily changes in sugar level of phloem sap and drymatter and carbohydrate fluctuations of leaflets, suggestinga coupling of translocation of photosynthate and minerals fromthe leaflets. Rates of import of minerals by shoots wereestimatedfrom shoot transpiration and mineral concentrations in trachealsap. Average day time rates of import of most elements were12–25 times those at night. Translocation of minerals,nitrogen and carbon to fruits also exhibited diurnal periodicity,average rates of import king three to seven times higher inthe day than at night. A model of transport based on the carbonand water economy of the fruit suggested that P, K, Fe, Zn,Mn and Cu were imported predominantly by phloem. Estimates ofvascular import accounted for 87–104 per cent of the fruit'sactual increment of these elements. Na and Ca were gauged tobe imported mainly by xylem, Mg almost equally by xylem andphloem. However, large discrepancies existed for these threeelements between estimated vascular import and actual intakeby the fruit. Lupinus angustifolius L., mineral transport, accumulation, fruits, xylem sap, phloem sap, transpiration  相似文献   

6.
This study was conducted lo determine whether naturally occurring xylem cytokinins, when supplied to leaves via the xylem at approximately endogenous concentrations, increase transpiration and delay senescence in selected monocot species (oat and wheat). The concentrations of some of the major cytokinins (zeatin, dihydrozeatin, ciszeatin and their ribosides, the O-glucosides and nucleotides) were determined in the xylem exudate of oat and wheat seedlings by radioimmunoassay. Evidence is presented that the small volume of exudate (4–5 mm3) collected per plant was xylem sap in transit at the time of shoot excision. Using the data on cytokinin levels, the individual bases and ribosides (and a base/riboside mixture), at multiples of concentrations determined in xylem sap, were tested in transpiration and senescence bioassays. The individual O-glucosides (and mixtures of the O-glucosides) were similarly tested at (i) multiples of the molar concentrations of the corresponding bases and ribosides, and/or at (ii) multiples of the endogenous concentrations. Similarly, zeatin and dihydrozeatin nucleotides were tested at multiples of the molar concentration of zeatin riboside and, in some instances, at multiples of endogenous concentrations. Our results suggest that, at least in oat and possibly in wheat, zeatin-type bases, ribosides and O-glucosides supplied to the leaf in xylem sap are likely to play a role in regulating transpiration in vivo. O-glucosides in oat xylem sap may be important regulators of leaf senescence in the intact plant. The nucleotides were present in xylem sap at lower concentrations than most of the bases, ribosides and O-glucosides. The nucleotides appear likely to play a lesser role than the bases, riboside and O-glucosidcs in controlling transpiration and senescence in the intact plant.  相似文献   

7.
Two aspects of root to shoot communication in flooded plants are discussed (i) the formation of porous aerenchyma that enhances the passage of oxygen, and other gases, from shoots to roots and (ii) the movement of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) from roots to shoots in the transpiration stream, and the effect of this on ethylene production and epinastic curvature in the shoots. For aerenchyma studies a highly sensitive photoacoustic laser detector for ethylene was used to avoid interference associated with other methods of ethylene measurement that require tissue excision. ACC concentrations in xylem sap were measured by physico-chemical means to ensure correct identification and account for processing losses. Solute concentrations, e.g., abscisic acid (ABA), in xylem sap are shown to be distorted by temporary contamination caused by the method used to collect sap. Concentrations of solutes in xylem sap (e.g., ACC) are also altered by changes in sap flow brought about by conventional methods of sap collection or by experimental treatments such as flooding the soil. Ways of for overcoming these problems are described together with a summary of preliminary results.  相似文献   

8.
We determined whether root stress alters the output of physiologically active messages passing from roots to shoots in the transpiration stream. Concentrations were not good measures of output. This was because changes in volume flow of xylem sap caused either by sampling procedures or by effects of root stress on rates of whole-plant transpiration modified concentrations simply by dilution. Thus, delivery rate (concentration x sap flow rate) was preferred to concentration as a measure of solute output from roots. To demonstrate these points, 1-aminocyclopropane-1-carboxylic acid (ACC), abscisic acid, phosphate, nitrate, and pH were measured in xylem sap of flooded and well-drained tomato (Lycopersicon esculentum Mill., cv Ailsa Craig) plants expressed at various rates from pressurized detopped roots. Concentrations decreased as sap flow rates were increased. However, dilution of solutes was often less than proportional to flow, especially in flooded plants. Thus, sap flowing through detopped roots at whole-plant transpiration rates was used to estimate solute delivery rates in intact plants. On this basis, delivery of ACC from roots to shoots was 3.1-fold greater in plants flooded for 24 h than in well-drained plants, and delivery of phosphate was 2.3-fold greater. Delivery rates of abscisic acid and nitrate in flooded plants were only 11 and 7%, respectively, of those in well-drained plants.  相似文献   

9.
Most plant‐based emissions of volatile organic compounds are considered mainly temperature dependent. However, certain oxygenated volatile organic compounds (OVOCs) have high water solubility; thus, also stomatal conductance could regulate their emissions from shoots. Due to their water solubility and sources in stem and roots, it has also been suggested that their emissions could be affected by transport in the xylem sap. Yet further understanding on the role of transport has been lacking until present. We used shoot‐scale long‐term dynamic flux data from Scots pines (Pinus sylvestris) to analyse the effects of transpiration and transport in xylem sap flow on emissions of 3 water‐soluble OVOCs: methanol, acetone, and acetaldehyde. We found a direct effect of transpiration on the shoot emissions of the 3 OVOCs. The emissions were best explained by a regression model that combined linear transpiration and exponential temperature effects. In addition, a structural equation model indicated that stomatal conductance affects emissions mainly indirectly, by regulating transpiration. A part of the temperature's effect is also indirect. The tight coupling of shoot emissions to transpiration clearly evidences that these OVOCs are transported in the xylem sap from their sources in roots and stem to leaves and to ambient air.  相似文献   

10.
This study was performed to understand the mechanisms for Se-enhanced resistance of parsley (Petroselinum crispum L.) plants to salinity stress. Plant growth was negatively affected by salt stress; however, Se treatments at 1 mg/L significantly improved the growth rate and enhanced the salt tolerance of seedlings. This increased tolerance in Se-supplied plants was obtained by reduced damaging effect on maximal quantum yield of photosystem II (PSII) (F v/F m) coupled with higher levels of carotenoids and non-photochemical quenching (NPQ). The performance index (PIABS), as evidence for modulation of PSII function, was downregulated by salt stress; while Se mitigated this effect. Moreover, analysis of OJIP transients demon-strated that Se reduced salt damaging effect on PSII function through improvement of excitation energy trapping (TR0/CS) and electron transport (ET0/CS) per excited cross-section of leaf. The Na concentrations in shoots and roots of parsley seedlings considerably enhanced after NaCl treatment. Interestingly, treatment of salt-stressed plants with Se decreased the Na contents in shoots via the limitation of the root-to-shoot translocation of Na and exclusion of Na from cell sap, as well as the retention of K/Na and Ca/Na ratios. These data provide the first evidence that the Se application alleviates salinity stress by enhancing PSII function and by decreasing Na content in the shoot via binding of Na to the root cell wall.  相似文献   

11.
Salicylic acid (SA) and its glucoside (SAG) were detected in xylem sap of Brassica napus by HPLC–MS. Concentrations of SA and SAG in xylem sap from the root and hypocotyl of the plant, and in extracts of shoots above the hypocotyl, increased after infection with the vascular pathogen Verticillium longisporum. Both concentrations were correlated with disease severity assessed as the reduction in shoot length. Furthermore, SAG levels in shoot extracts were correlated with the amount of V. longisporum DNA in the hypocotyls. Although the concentration of SAG (but not SA) in xylem sap of infected plants gradually declined from 14 to 35 days post infection, SAG levels remained significantly higher than in uninfected plants during the whole experiment. Jasmonic acid (JA) and abscisic acid (ABA) levels in xylem sap were not affected by infection with V. longisporum. SA and SAG extend the list of phytohormones potentially transported from root to shoot with the transpiration stream. The physiological relevance of this transport and its contribution to the distribution of SA in plants remain to be elucidated.  相似文献   

12.
Abstract. This paper describes studies on trees of Pisonia grandis , bushes of Argusia argentea , and the perennial herb Melanthera biflora , growing on One Tree Island, a coral cay of the Great Barrier Reef with 'soil' of coarse coral rubble. Water potential (Ψb, measured on small shoots with a pressure chamber), sap flow, stomatal conductance, vapour pressure deficit and photon flux density were monitored over day/night cycles. Sap flow and Ψb responded to changes in light and humidity. From these experiments good linear correlations were found between sap flow in a shoot and Ψb of similar adjacent shoots. The linearity suggests that the resistance to sap flow is constant as Ψb varies. The correlation, however, does not indicate a causal relationship between Ψb of an individual shoot on the plant and its sap flow. Ψb was only slightly different in shaded shoots from those in sunshine, although sap flow would be expected to differ between them. Enclosing shoots and so reducing their transpiration and sap flow to very low rates resulted in only small changes in Ψb of the enclosed shoots; Tb of such enclosed shoots should closely approximate that of the xylem at the point of shoot attachment. From these results it is suggested that the resistance to water flow in shoot and leaf xylem is small compared to the resistance further down the plant, in the root or at the root/soil interface. Shoot xylem water potential would be similar for all parts of the plant, and in such plants the water potential of shoots in the shade would be determined by the overall water use of the plant.  相似文献   

13.
Transpiration inhibition by stored xylem sap from well-watered maize plants   总被引:3,自引:0,他引:3  
There is increasing evidence that a chemical signal exists in xylem sap of plants subjected to water deficits which influences physiological responses in plant shoots. An important method of studying this signal is the transpiration response of excised leaves exposed to xylem sap collected from plants. However, Munns et al [Plant, Cell & Environment 16, 867–877] cautioned that transpiration inhibition is observed when xylem sap collected from wheat and barley is stored before determining physiological activity. The objective of the study reported here was to determine if transpiration inhibition develops in maize sap collected from well-watered plants when the sap is stored under various conditions. It was found that storage of maize sap collected from well-watered plants for only 1 d at -20°C resulted in the development of substantial transpiration inhibition in bioassay leaves. Storage of sap at 4°C resulted in the development of the effect after 2 weeks, while storage at ?86°C showed only small transpiration inhibition after 3 weeks. The major source of the transpiration inhibition was the development of a substance in the stored sap that resulted in physical blockage of the transpiration stream in bioassay leaves. However, a small signal component may also have developed in the stored sap. Because of the possibility of ionic activity under freezing conditions at ?20°C, calcium was studied for its potential involvement in the transpiration inhibition. However, the calcium concentrations found to inhibit transpiration were nearly an order of magnitude larger than the calcium concentrations observed in xylem sap.  相似文献   

14.

Background and aims

Soil drying leads to the generation of chemical signals in plants that regulate water use via control of the stomatal aperture. The aim of our work was to identify the presence and identity of potential chemical signals, their dynamics, and their relationship with transpiration rate during soil drying in hop (Humulus lupulus (L.)) plants.

Methods

We used pressure chamber technique for measurement of shoot water potential and collection of shoot xylem sap. We analyzed concentrations of abscisic acid (ABA), nitrate, phosphate, sulphate and malate in sap and also the rate of whole plant transpiration.

Results

Transpiration rate decreased prior to changes in shoot water potential. The concentration of ABA in xylem sap continuously increased from early to later stages of water stress, whereas in leaves it increased only at later stages. Shoot sap pH increased simultaneously with the decrease of transpiration rate. Xylem sap alkalization was in some cases accompanied by a decrease in nitrate concentration and an increase in malate concentration. Concentration of sulphate increased in xylem sap during drying and sulphate in combination with a higher ABA concentration enhanced stomatal closure.

Conclusions

Several early chemical signals appear in sap of hop plants during soil drying and their impact on transpiration may vary according to the stage of soil drying.  相似文献   

15.
Stomatal conductance (g(s)) of pepper (Capsicum annuum L.) plants decreased during the second photoperiod (day 2) after withholding nitrate (N). Stomatal closure of N-deprived plants was not associated with a decreased shoot water potential (Psi(shoot)); conversely Psi(shoot) was lower in N-supplied plants. N deprivation transiently (days 2 and 3) alkalized (0.2-0.3 pH units) xylem sap exuded from de-topped root systems under root pressure, and xylem sap expressed from excised shoots by pressurization. The ABA concentration of expressed sap increased 3-4-fold when measured on days 2 and 4. On day 2, leaves detached from N-deprived and N-supplied plants showed decreased transpiration rates when fed an alkaline (pH 7) artificial xylem (AX) solution, independent of the ABA concentration (10-100 nM) supplied. Thus changes in xylem sap composition following N deprivation can potentially close stomata. However, the lower transpiration rate of detached N-deprived leaves relative to N-supplied leaves shows that factors residing within N-deprived leaves also mediate stomatal closure, and that these factors assume greater importance as the duration of N deprivation increases.  相似文献   

16.
The economy of carbon, nitrogen and water during growth of nodulated, nitrogen-fixing plants of white lupin (Lupinus albus L.) was studied by measuring C, N and H2O content of plant parts, concentrations of C and N in bleeding sap of xylem and phloem, transpirational losses of whole shoots and shoot parts, and daily exchanges of CO2 between shoot and root parts and the surrounding atmosphere. Relationships were studied between water use and dry matter accumulation of shoot and fruits, and between net photosynthesis rate and leaf area, transpiration rate and nitrogen fixation. Conversion efficiencies were computed for utilization of net photosynthate for nitrogen fixation and for production of dry matter and protein in seeds. Partitioning of the plant's intake of C, N and H2O was described in terms of growth, transpiration, and respiration of plant parts. An empirically-based model was developed to describe transport exchanges in xylem and phloem for a 10-day interval of growth. The model depicted quantitatively the mixtures of xylem and phloem streams which matched precisely the recorded amounts of C, N and H2O assimilated, absorbed or consumed by the various parts of the plant. The model provided information on phloem translocation of carbon and nitrogen to roots from shoots, the cycling of carbon and nitrogen through leaves, the relationship between transpiration and nitrogen partitioning to shoot organs through the xylem, the relative amount of the plant's water budget committed to phloem translocation, and the significance of xylem to phloem transfer of nitrogen in stems as a means of supplying nitrogen to apical regions of the shoot.  相似文献   

17.
Waterlogging is known to cause an increase in ethylene synthesis in the shoot which results in petiole epinasty. Evidence has suggested that a signal is synthesized in the anaerobic roots and transported to the shoot where it stimulates ethylene synthesis. Experimental data are presented showing that 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, serves as the signal. Xylem sap was collected from detopped tomato plants (Lycopersicon esculentum Mill. cv. VFN8). ACC in the sap was quantitated by a sensitive and specific assay, and its tentative chemical identity verified by paper chromatography. ACC levels in both roots and xylem sap increased markedly in response to waterlogging or root anaerobiosis. The appearance of ACC in the xylem sap of flooded plants preceded both the increase in ethylene production and epinastic growth, which were closely correlated. Plants flooded and then drained showed a rapid, simultaneous drop in ACC flux and ethylene synthesis rate. ACC supplied through the cut stem of tomato shoots at concentrations comparable to those found in xylem sap caused epinasty and increased ethylene production. These data indicate that ACC is synthesized in the anaerobic root and transported to the shoot where it is readily converted to ethylene.  相似文献   

18.
Calcium in Xylem Sap and the Regulation of its Delivery to the Shoot   总被引:7,自引:2,他引:5  
Amounts of total and free calcium in root and shoot xylem sapwere quantified for a number of species grown in comparableenvironments and in a rooting medium not deficient in calcium.The potential for the shoot to sequester calcium was also examined,along with the ability for ABA to regulate calcium flux to theleaf. Xylem sap calcium showed considerable interspecific and diurnalvariation, even though the plants were grown with similar rhizosphericcalcium concentrations. The potential for the shoot to sequesterxylem sap calcium was also highly variable between species andimplied an ability, at least in some species, to regulate thecalcium reaching the shoot in the transpiration stream. Long distance transport of calcium in the xylem was not primarilyby mass flow, because neither calcium uptake nor distributionwere closely related to water uptake or transpiration. The diurnalchanges in xylem sap total ion concentration appeared to benegatively correlated with transpiration while, in contrast,the calcium ion concentration showed two peaks, one occurringin the dark and the other in the light period. The application of ABA to roots caused an increase in the rateof exudation from the xylem of detopped well-watered plants.These experiments suggest that changes in root water relationsdriven by ionic fluxes were the likely cause for enhanced sapexudation from ABA-treated roots. The steady-state concentrationof calcium in the xylem sap was unaffected by ABA when exudationrate increased and, consequently, the flux of calcium must alsohave increased. Key words: Abscisic acid, calcium, xylem sap, ionic fluxes  相似文献   

19.
Collection of Xylem Sap at Flow Rate Similar to in vivo Transpiration Flux   总被引:3,自引:0,他引:3  
We have explored a method to collect xylem sap using a Scholanderpressure chamber for potted plants. Intact root system in potswhich fitted the pressure chamber was pressurised at a pneumaticpressure numerically equal to the absolute value of shoot waterpotential. The rate of xylem flow obtained from the stem stumpunder such pressure was found similar to the rate of transpirationbefore detopping. The rate of pressurised flow from detop-pedroots was linearly related to the pressure applied in both well-wateredand soil-dried plants. The osmotic concentration of the xylemsap was negatively related to the rate of volume flow, suggestingthe necessity to collect xylem sap at in vivo flow rate if originalsolute concentration is to be evaluated. The concentration ofABA in the xylem sap, however, did not show such a relationshipwith water flux. Both well-watered and soil-dried plants showedthe concentration of ABA in xylem sap largely stable with arange of volume flow rate, indicating a linear relationshipbetween the rate of ABA delivery through xylem and that of volumeflow. We also compared the concentrations of ABA in xylem sapsequentially collected from pressurised roots with that fromdetached shoots of the same plants. The concentration of ABAin the initial saps from shoots showed to be similar to thatfrom roots. However, a decrease in the concentration of ABAin the xylem sap collected from detached leaf or twig was observedwhen more volume of sap was collected, which might also be dependenton the plant species and the volume of xylem vessels concerned. (Received February 3, 1997; Accepted October 7, 1997)  相似文献   

20.
Abstract: The rates of photosynthesis and transpiration, as well as the concentrations of organic compounds (total soluble non-protein N compounds [TSNN], soluble carbohydrates), in the xylem sap were determined during two growth seasons in one-year-old Quercus robur saplings. From the data, the total C gain of the leaves, by both photosynthesis and the transpiration stream, was calculated. Large amounts of C were allocated to the leaves by the transpiration stream; depending on the time of day and the environmental conditions the portion of C originating from xylem transport amounted to 8 to 91% of total C delivery to the leaves. Particularly under conditions of reduced photosynthesis, e.g., during midday depression of photosynthesis, a high percentage of the total C delivery was provided to the leaves by the transpiration stream (83 to 91 %). Apparently, attack by phloem-feeding aphids lowered the assimilate transport from roots to shoots; as a consequence the portion of C available to the leaves from xylem transport amounted to only 12 to 16 %. The most abundant organic compounds transported in the xylem sap were sugars (sucrose, glucose, fructose) with concentrations of ca. 50 to 500 μmol C ml-1, whereas C from N compounds was of minor significance (3 to 20 μmol ml-1 C). The results indicate a significant cycling of C in the plants because the daily transport of C with the transpiration stream exceeded the daily photosynthetic CO2 fixation in several cases. This cycling pool of C may sustain delivery of photosynthate to heterotrophic tissues, independent of short time fluctuations in photosynthetic CO2 fixation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号