首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 281 毫秒
1.
在动静压混合气体润滑轴承支承的双透平与四磁盘同轴结构的涡轮膨胀发电机试验台上,研究气体轴承-转子系统动力学特性。通过轴心轨迹、频率耦合三维图和频谱图,分析系统非线性行为特征,结合转子系统的结构对飞升现象进行分析。结果表明:该轴承-转子系统由于采用气浮轴承,在一定供气压力下,出现半速涡动、气膜振荡的典型振荡现象,并在某一转速时出现飞升现象。出现飞升的原因是由于设备结构中采用了阻尼低的气体轴承以及两端涡轮结构,使其在工频、分频能量转化时转换成了转子转速,导致转子转速的急剧增加。通过调节振动特性和控制涡轮供气流量等措施可抑制飞升。  相似文献   

2.
气体轴承转子系统低频耦合涡动特性控制的试验研究   总被引:1,自引:0,他引:1  
根据轴承转子系统的耦合调频原理,结合工程稳定性判别准则,对动静压混合气体轴承及转子系统的低频耦合涡动特性进行了试验研究。结果表明:通过调整轴承供气压力、转子旋转角速度等参数,可以改变系统固有频率与低频涡动和低频振荡频率之间的耦合关系,推迟或消除气膜振荡低频的发生,能够有效抑制低频涡动和低频振荡,从而达到提高轴系运行转速范围的目的。  相似文献   

3.
以某悬臂转子-轴承系统为研究对象,基于有限元方法建立了转子-轴承系统动力学模型。通过时域图、三维谱图和幅频响应图得到了转子系统升降速过程中出现的油膜失稳特征,分析了不同角加速度值在升降速过程中对1阶和2阶油膜失稳规律的影响。研究发现:升降速过程中产生的切向惯性力会改变油膜失稳转速,与稳态情况(角加速度为零)相比,升降速情况下2阶油膜失稳转速有所延迟;升速过程中随着角加速度值的增大2阶油膜失稳转速略有增加、降速过程略有减小;降速过程与升速过程相比,出现明显的迟滞效应。  相似文献   

4.
针对高速动静压气体轴承气膜的复杂非线性动力学行为,以球面螺旋槽动静压气体轴承为研究对象,建立润滑分析数学模型;采用有限差分法与导数积分法进行求解,得到动态扰动压力分布及动态特性系数,并研究切向供气条件下螺旋槽参数、径向偏心率、供气压力、转速对气膜刚度阻尼系数的影响规律;建立线性稳定性计算模型,预测气膜涡动失稳转速,分析运行参数对失稳转速的影响。结果表明:气膜阻尼是一种抑制涡动的因素,气膜的稳定性取决于气膜刚度与阻尼的协同作用;气膜刚度阻尼随着槽宽比、槽深比、螺旋角的增大,整体上呈先增大后减小的趋势;刚度随转速的升高而增大,阻尼则随转速的升高而减小;径向偏心率和供气压力越大,气膜刚度和阻尼越大;在一定范围内,提高供气压力、增大径向偏心率能够提高系统失稳转速;合理地选取轴承结构参数和运行参数,能够优化轴承动态特性,保证气体轴承较高的运行稳定性。  相似文献   

5.
透平膨胀机应用的小孔节流式静压气体轴承的本质是动静压混合气体轴承,这里将动静压混合气体轴承作为研究对象,从动压轴承和静压轴承角度分别研究其工作原理和静态特性。混合气体轴承中气膜压力分布是求解轴承静态特性的关键,采用有限差分法(FDM)对含有气膜压力的Reynolds方程通过MTLAB编写的程序进行求解,分析混合轴承的工作原理并计算其静态特性。对比分析偏心率、转速、长径比和供气压力等因素对动压轴承和静压轴承静态特性的影响。结果表明:增大偏心率、提高转速、增大供气压力,采用轴承大长径比均可以提高动静压混合气体轴承的承载力;增大偏心率和提高转速,可增大气膜刚度,降低转子姿态角,提高转子稳定性。  相似文献   

6.
高速轻载涡轮增压器转子系统的入口油温在长周期变转速运行条件下会产生动态变化,从而改变转子系统振动特性甚至导致非线性振动事故。以某型汽油机用高速轻载涡轮增压器转子为研究对象,分析浮环轴承内油膜最小厚度与偏心率随入口油温参数的变化规律,构建涡轮增压器转子-浮环轴承系统动力学有限元模型,采用Newmark积分法分析转子系统的非线性瞬态响应,结合涡轮增压器升速实验,得到不同入口油温下转子系统三维振动瀑布图与Colormap频谱图,探究入口油温对转子系统振动响应特性的影响。结果表明:随着入口油温从50℃增至130℃时,内油膜最小厚度会减少,环速比与偏心率会增加,内油膜振荡幅值逐渐降低,但出现内油膜振荡与外油膜涡动的轴颈转速点会提前约30%,且外油膜涡动幅值会逐步增加。综合内外油膜涡动与振动幅值,入口油温约为90℃时转子振动情况较好。结论可为设计具有智能抗振性能的高速轻载涡轮增压器转子系统的运行参数提供理论参考。  相似文献   

7.
以小孔节流深浅腔动静压气体轴承为研究对象,采用Fluent软件对轴承的承载特性进行分析,研究偏心率、供气压力、主轴转速、气膜厚度、浅腔深度比等因素对轴承承载力和刚度的影响。结果表明:小孔节流深浅腔动静压气体轴承浅腔区的平均压力大于深腔区的平均压力,压力最大区域出现在浅腔末端靠近轴承端面处;随着供气压力的增加,承载力逐渐增大,但供气压力不应超过0.95 MPa;当主轴转速在3×10~5 r/min以内时,承载力和刚度随着转速的增加呈线性增长规律,当主轴转速超过3×10~5 r/min继续增加时,承载力和刚度的增长趋势明显放缓;承载力与刚度随着浅腔深度比的增加先增大后减小,当浅腔深度是气膜厚度的1~1.5倍时,承载力与刚度接近最大值。  相似文献   

8.
针对某30 kW微型燃气轮机用静压气体轴承,开展轴承刚度、承载力及轴系临界转速特征的数值与实验研究。通过离散化可压缩雷诺方程,采用数值迭代方法,获取轴承内气膜压力分布和气膜刚度特性;采用有限元方法,研究转子-轴承系统的模态特性与临界转速;在气体轴承支撑的微型燃气轮机试验台上,采用时域振动信号和不平衡响应曲线等振动测试分析方法,获取轴系的气膜临界转速特性。研究结果表明:研究的该静压气体轴承,其转速在30 000 r/min内动压效应相对于静压效应可以忽略;轴承气膜刚度随着偏心率增大而增大,但当偏心率超过0. 8时,由于出现"静态不稳定区域"导致气膜刚度下降。数值模拟和实验都证实了转子在6 000 r/min和9 000 r/min附近出现了由气膜刚度引起的锥动临界特征。  相似文献   

9.
气体箔片轴承是一种性能良好的气体动压轴承,但是由于箔片轴承结构较复杂,其动静态特性的求解也更加复杂,计算比较耗时。针对目前常用的弱耦合解法存在计算效率低、耗时长的问题,基于同步求解原理,开发一种计算效率较高的强耦合解法。使用有限差分法计算雷诺方程得到气膜压力分布,将波箔片简化为弹簧模型,然后建立考虑气膜压力、转子运动和箔片变形的箔片轴承转子系统状态方程,实现同步求解。使用该模型对轴承转子系统的动力学特性进行探究,改变转速、转子质量和名义间隙等参数,绘制了转子轨迹图,分析其频谱。仿真结果表明:随着转子转速和质量的增加,系统的稳定性下降;名义间隙过小时,系统变得不稳定,当其增大到某一值时,再增加名义间隙对系统稳定性影响不大。相比传统的弱耦合求解方法,强耦合解法能够进一步提升计算速度和提高计算精度,为箔片轴承的设计和性能预测提供了研究工具。  相似文献   

10.
基于CFD建立球面螺旋槽动静压气体轴承气膜的有限元模型,数值计算气膜网格点上的压力分布,模拟气膜瞬态流场中复杂的气体流动,得到气膜的压力分布、承载力以及动态特性系数。结果表明:增加供气压力可以有效地增强静压效应,减小气膜厚度和增加转速有助于增强动压效应,动静压效应耦合可以提高轴承承载性能,偏心率为0.4~0.5,平均气膜厚度为8~12μm,供气压力为0.5~0.6 MPa时,产生的动静压耦合效应明显,从而可增加气膜的承载性能和轴承高速运行的稳定性;轴承刚度系数随着气膜厚度的增大呈先增加后减小的趋势,随着偏心率的增加而增加;轴承阻尼系数随着气膜厚度和偏心率的增加变化较为复杂,但整体上呈增大的趋势,因此,合理地选取气膜厚度和偏心率能够提高轴承承载性能,改善其动态特性,提高球面动静压气体轴承运行稳定性。  相似文献   

11.
The fluttering characteristics of the upper unloaded pads in a tilting pad journal bearing were studied experimentally. In order to investigate the fluttering phenomena of the pad, the absolute vibration of the pad, the relative vibration between the bearing and the shaft, and the circumferential film thickness/film pressure were measured with the variation of the supply oil flow rate, the shaft speed, and bearing load. By analyzing the circumferential distributions of the film thickness, it was identified that the film shape of the upper pad continuously alternates between the wedge shape and the diverged shape in the rotational direction while the shaft is rotating. And it was discovered that the pads tend to a representative sub-synchronous self-excited vibration exactly like classical rotor-bearing instability, defined as the oil whirl and oil whip phenomena, with the increase of rotating speed from the cascade plot of the pad. The major finding was that the incipient fluttering velocity of the pad increased with the increase of the supply oil flow rate but decreased with the increase of the bearing load. The experimental results also showed that the fluttering amplitudes of the pad can be effectively suppressed by controlling the supply oil flow rate.  相似文献   

12.
Many industrial applications and experiments have shown that sliding bearings often experience fluid film whip due to nonlinear fluid film forces which can cause rotor-stator rub-impact failures. The oil-film whips have attracted many studies while the water-film whips in the water lubricated sliding bearing have been little researched with the mechanism still an open problem. The dynamic fluid film forces in a water sliding bearing are investigated numerically with rotational, whirling and squeezing motions of the journal using a nonlinear model to identify the relationships between the three motions. Rotor speed-up and slow-down experiments are then conducted with the rotor system supported by a water lubricated sliding bearing to induce the water-film whirl/whip and verify the relationship. The experimental results show that the vibrations of the journal alternated between increasing and decreasing rather than continuously increasing as the rotational speed increased to twice the first critical speed, which can be explained well by the nonlinear model. The radial growth rate of the whirl motion greatly affects the whirl frequency of the journal and is responsible for the frequency lock in the water-film whip. Further analysis shows that increasing the lubricating water flow rate changes the water-film whirl/whip characteristics, reduces the first critical speed, advances the time when significant water-film whirling motion occurs, and also increases the vibration amplitude at the bearing center which may lead to the rotor-stator rub-impact. The study gives the insight into the water-film whirl and whip in the water lubricated sliding bearing.  相似文献   

13.
在气体静压轴承支承的单跨四圆盘结构转子试验台上,试验研究轴承-转子系统的振动特性。采用轴心轨迹、时域分析、频谱图等振动测试分析方法,呈现了半速涡动、双低频、低频共振等非线性动力学现象;分析了半速涡动、双低频、低频共振随转速的变化关系,定性分析了工频与低频的能量转化关系。结果表明:升速过程中采用较高升速率可避免低频振动的发生,降速过程中过大的降速率会引起半速涡动及双低频振动现象;试验中低频振幅增加导致工频能量减少,转速下降。  相似文献   

14.
高速列车滚动轴承支承松动系统动力学特性研究*   总被引:3,自引:0,他引:3  
作为列车走行部的关键零部件,轴箱滚动轴承支承松动故障会直接影响到车辆的运行平稳性。针对高速列车滚动轴承内圈与轴颈配合的松动问题,提出一种车体-构架-悬挂-滚动轴承-轮轨的垂向耦合动力学模型,并采用优化的四阶Runge-Kutta数值积分及试验方法,研究不同松动间隙、不同行驶速度下,高速列车滚动轴承支承松动系统的非线性动力学特性。结果表明:理论计算与试验结果较吻合,松动间隙的大小对未松动侧轴箱的振动响应影响不大,但对松动侧轴箱的振动响应有较大影响,且可使得系统的运动状态由近拟周期运动发展为混沌运动。列车低速行驶时松动侧轴箱振动幅值和振动速度均比高速行驶时更大,轴箱振动响应的低频成分只与行驶速度有关,不随松动间隙的改变而改变。  相似文献   

15.
浮环轴承内外轴向长度结构参数会影响油膜压力分布与偏心率,产生显著分频振动而引发高速轻载涡轮增压器转子非线性振动故障。基于流体润滑理论和浮环力矩平衡方程,推导了含浮环轴承的涡轮增压器转子系统动力学方程,揭示浮环轴承轴向长度与转子系统振动响应之间的关系。以某型汽油机用涡轮增压器转子系统为例,分析浮环内、外轴向长度对轴承油膜压力、偏心率等动力特性的影响,构建转子系统动力学有限元模型,通过三维振动瀑布图研究不同浮环轴向长度下转子系统频域瞬态振动响应,结果表明:浮环内轴向长度从2.6增加到4.6 mm,导致浮环转速升高,最大内油膜压力减小,轴颈偏心率降低,分频幅值增加且出现分频的轴颈转速由142 kr/min降至76 kr/min,更易产生明显的非线性涡动现象;浮环外轴向长度从3.6增加到6.15 mm,使浮环转速降低,最大外油膜压力变小,浮环偏心率及轴颈相对浮环的偏心率减小,低转速下分频幅值减少且出现分频的轴颈转速由10 kr/min升至22 kr/min,可抑制转子系统过早发生非线性涡动,为浮环轴承结构参数设计与试验提供理论支撑。  相似文献   

16.
为优化动静压气体止推轴承的承载特性,设计一种具有螺旋槽和狭缝节流器结构的动静压气体止推轴承,采用Fluent对轴承静态特性进行仿真分析,通过改变主轴转速、供气压力,研究气膜厚度、螺旋槽宽度、狭缝厚度等参数对轴承静态特性的影响。结果表明:相对狭缝节流止推轴承,增加螺旋槽结构可以提升轴承的动压效应增强,从而提升轴承的承载力和刚度;相同条件下,气膜厚度越大,轴承的承载力和刚度越小;主轴转速和供气压力增加,承载力和刚度均提升明显;螺旋槽宽度增加,轴承的承载力和刚度先增大后减小;狭缝厚度增大,轴承的承载力先增大后不变,刚度先增加后减小;狭缝深度提升,轴承的承载力减小,刚度先增大后减小。  相似文献   

17.
应用ANSYS有限元软件对透平膨胀机的核心部件——气体轴承进行模态分析和谐响应分析,求解转子的振型、应力分布、固有频率和失稳转速。并对不同轴承半径间隙时的转子动力学分析,根据失稳转速的变化规律,得出所设计的双排径向静压气体轴承的最佳轴承半径间隙:Cr=0.02 mm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号