首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Friction stir scribe technology, a derivative of friction stir welding, was applied for the dissimilar lap welding of an aluminium alloy and galvanised mild steel sheets. During the process, the rotating tool with a cobalt steel scribe first penetrated the top material – aluminium – and then the scribe cuts the bottom material – steel. The steel was displaced into the upper material to produce a characteristic hook feature. Lap welds were shear tested, and their fracture paths were studied. Welding parameters affected the welding features, including hook height, which turned out to be highly related to fracture position. Therefore, in this paper, the relationships among welding parameters, hook height, joint strength and fracture position are presented. In addition, the influence of zinc coating on joint strength was also studied.  相似文献   

2.
Abstract

In this work, the feasibility of friction stir lap welding an aluminium alloy (Al-5083) to the aluminium clad steel sheet was studied. The welded joints were characterised by various methods including shear–tensile test and optical microscopy and scanning electron microscopy. The results indicated that sound and defect free joints were obtained. The fracture loads of the samples reached up to 94% compared with that of the steel base metal. Moreover, the joint strength linearly increased with the decrease in thickness of the aluminium layer roll bonded on the steel sheet. It was also shown that welding rotation and travel speed variation did not considerably impact the fracture loads in the studied range.  相似文献   

3.
Abstract

The present paper reports the resistance spot welding of steel and aluminium sheets using aluminium clad steel sheets as insert metals. Intermetallic compound layers were formed in the weld zones in direct spot welding of steel sheets to aluminium sheets. Thus, the strength of these joints was lower than that of aluminium to aluminium joints. Intermetallic compound layers were also formed at the steel/aluminium interfaces of the insert metal in welding of steel to aluminium using an insert metal sheet. However, the strength of these joints was of the same order as that of the aluminium joints. The fracture mode of these joints varied with the welding current. The suitable welding current for steel to aluminium joints varied between the values suitable for steel to steel and aluminium to aluminium joints. The fatigue strength of joints using insert metals was somewhat lower than that of the aluminium joints.  相似文献   

4.
S Sato 《Welding International》2013,27(12):943-948
Summary

This paper deals with the resistance spot weldability of steel to aluminium alloy using an intermediate layer of aluminium clad steel. Five types of clad sheet with various steel/aluminium thickness ratios were produced by hot rolling. The mechanical properties of the clad sheet changed with the thickness ratio and ranged between those of steel and:those of aluminium sheet. The peel strength of the steel/aluminium interfaces was greater than 25 N/mm.

Materials used in spot welding were 0.8 mm thick EDDQ steel sheet, three types of 1.0 mm thick aluminium alloy sheet and the clad sheet mentioned above. Spot‐weldability, including suitable welding current, nugget diameter, tensile shear strength and thickness of the intermetallic compound layer formed at the interface of the clad sheets, changed with the thickness ratio of the clad sheet. From these results, it was concluded that spot‐weldability was affected by the thickness ratio of the clad sheets.

Spot‐weldability was also affected by the alloying elements in the aluminium alloy sheet. Tensile shear strength and nugget diameter varied in various types of aluminium alloy sheet.  相似文献   

5.
Abstract

Dissimilar lap joints of aluminium and stainless steel were first friction stir welded by the tool with a cutting pin. The results showed that sound joints could be obtained by this method. When the pin was inserted into the lower steel sheet, macrointerlocks were formed by the steel flashes plugging into the upper aluminium at both sides of the nugget bottom. At the aluminium/steel interface, a thin intermetallic compound (IMC) layer and the mechanical bonding of microinterlocks were formed. In addition, the aluminium near the interface was also strengthened by grain refinement and IMC particles. Therefore, the beneficial effect of the macrointerlocks provided by the steel flashes was removed, the shear strength of the joint reached 89·7 MPa, which was even higher than that of the base metal of aluminium.  相似文献   

6.
铝/钢无匙孔搅拌摩擦点焊焊接性分析   总被引:2,自引:1,他引:1       下载免费PDF全文
采用自行设计的无匙孔搅拌摩擦点焊方法对6061铝合金和DP600镀锌钢进行点焊(钢上铝下),利用扫描电镜、能谱仪及拉伸试验对接头的微观组织和力学性能进行研究.结果表明,搅拌头旋转频率为1200 r/min、预热时间为6 s和搅拌针长度为3.2 mm时,接头抗剪载荷可达11.2 kN.接头表面平整美观无匙孔;接头由搅拌区和扩散区组成,搅拌区内钢以弯钩状分布嵌入铝基体,形成牢固的机械连接;扩散区内铝和钢依靠界面上的金属间化合物连接,连接方式为冶金结合.接头断裂位置为扩散区化合物层与铝基体界面处,断口呈河流状的解理台阶,属于脆性断裂.  相似文献   

7.
先进高强钢电阻点焊接头的断裂模式分析与预测   总被引:1,自引:1,他引:0       下载免费PDF全文
孔谅  刘思源  王敏 《焊接学报》2020,41(1):12-17
研究了先进高强钢(advanced high strength steel, AHSS)两层板电阻点焊接头的断裂模式,不同的断裂模式会影响点焊接头断裂时的机理、力学性能及断裂位置,基于不同组合下的临界熔核尺寸、最大载荷、断口宏观形貌、初始断裂位置、宏观金相组织以及微观硬度曲线等试验结果,阐明了板材厚度和板材强度两类因素对于断裂模式的影响规律. 结果表明,板材强度因素会直接影响断裂模式、初始断裂位置以及最大载荷;板材厚度因素影响断裂模式但不改变初始断裂位置及最大载荷. 临界熔核尺寸的影响因素有板材厚度、板材强度、熔核中缺陷以及拔出断裂位置距熔合线的距离. 在此基础上,文中提出了临界熔核尺寸(DCR)的预测模型及预测方法,该方法与试验值符合较好,为实际工业应用中的临界熔核尺寸判定提供了理论依据.  相似文献   

8.
铜/镀锌钢异种金属Nd:YAG激光脉冲MIG复合热源钎接焊   总被引:1,自引:1,他引:1  
雷振  秦国梁  王旭友  林尚扬 《焊接学报》2007,28(12):18-20,25
将激光一电弧复合热源焊接应用于铜与钢的熔一钎连接,用该焊接方法实现了T2紫铜合金板与镀锌钢板的优质连接。结果表明,焊接接头钢母材未发生熔化而铜合金母材熔化,其焊缝与钢母材为钎焊连接,拉伸试验中试样的断裂位置发生在焊缝铜母材热影响区,焊接热影响区略有软化。断口分析发现,接头的断裂属于塑性断裂。高倍电镜分析表明,焊缝钎焊连接界面处未见钢溶蚀及Cu沿铁素体晶界侵入现象;能谱分析结果表明,焊接接头中Cu,Fe原子分别向对方基体进行了良好的扩散,二者在钎焊连接界面处形成了Cu—Fe固溶体,并且在接头的钎焊连接界面处有Si元素的富集现象。  相似文献   

9.
铝/钢异种金属Nd:YAG激光-MIG复合热源熔-钎焊接工艺   总被引:5,自引:2,他引:5  
铝与钢异种金属的优质高效焊接一直是焊接领域的一项技术难题.针对铝与钢焊接的技术困难和特点,提出了可实现铝与钢熔-钎连接的大光斑激光-电弧复合热源焊接方法,用该焊接方法实现了5A02铝合金板与镀锌钢板的优质高效连接.试验结果分析表明,接头钢母材未发生熔化,焊缝与钢母材为钎焊连接,拉伸试样的破坏位置发生在接头铝母材热影响区,接头的抗拉强度与铝合金电弧熔化焊接头强度相当.  相似文献   

10.
In this paper, the effect of post heat treatment on fatigue behaviour of friction stir spot welded Al–Mg–Si aluminium alloy was investigated. The microstructure of the weld zone was classified into two regions: stir zone (SZ) and mixed zone (MZ), where fine equiaxed grains due to dynamic recrystallization were observed. Two kinds of post heat treatment, namely aging and T6 treatment, were applied to the as-welded joints. The grains in the SZ and MZ were extremely enlarged only by T6 treatment, but some fine grains still remained near the boundary of MZ. Fatigue tests were conducted using lap-shear specimens at a stress ratio R = 0.1. Post heat treatments exhibited little influence on fatigue strength, but fatigue fracture morphology was dependent on both load level and post heat treatment. At high applied loads, fatigue fracture took place through the MZ in the as-welded and aged joints, while along the boundary of MZ in the T6 treated joint. At low applied loads, the fatigue crack initiated at the edge of the nugget and then propagated through the upper sheet in the as-welded joint, but the lower sheet in the aged and T6 treated joints. The dependence of fracture morphology on post heat treatment was attributed to the change of microstructures and hardness distribution around the nugget by post heat treatment.  相似文献   

11.
High tensile strength steel sheets having different strengths were joined with an aluminium alloy sheet by a self-piercing rivet. In the joining, a conventional rivet and die used for aluminium alloy sheets were employed in order to have the versatility for various steel sheets. The effects of the flow stress of the high strength steel sheets and the combination of the sheets on the joinability of the sheets were investigated by finite element simulation and an experiment. As the tensile strength of the high strength steel sheet increases, the interlock for the upper high strength steel sheet increases due to the increase in flaring during the driving through the upper sheet, whereas that for the lower high strength steel sheet decreases. The joint strength for the lower high strength steel is comparatively smaller than that for the upper high strength steel sheet. It was found that the high tensile strength steel sheets below 590 MPa were fully joined with the aluminium alloy sheet even with the conventional self-piercing rivet and die.  相似文献   

12.
Abstract

The fracture toughness in a friction stir welded joint of thick plates of structural aluminium alloy type A5083-O is investigated. A joint between two 25 mm thick plates is fabricated by one sided, one pass friction stir welding. The Charpy impact energy and critical crack tip opening displacement (CTOD) in the friction stir weld are much higher than those in the base metal or heat affected zone, whereas mechanical properties such as stress–strain curve and Vickers hardness are not conspicuously different. The effects of the microstructure on crack initiation and propagation are studied in order to clarify the difference in fracture toughness between the stir zone and base metal. The analyses of the fracture resistance curves and the diameters of dimples in the fracture surface after both tensile and bending tests show that the fine grained microstructure in the stir zone helps to increase ductile crack initiation and propagation resistance. It is found that the high fracture toughness value in the stir zone is affected by the fine grained microstructure in friction stir welds.  相似文献   

13.
High strength steel and aluminium alloy sheets were joined by mechanical clinching with dies for control of metal flow. Since the sheets undergo plastic deformation for the joining during the mechanical clinching, the high strength steel sheets tend to fracture due to the small ductility. For the upper high strength steel sheet, fracture was caused by the concentration of deformation around the corner of the punch, and cracks were caused by the tensile stress generated in the bulged bottom into the groove of the die for the lower high strength steel sheet. To prevent these defects, metal flow of the sheets was controlled by optimising a shape of the die. For the upper high strength steel sheets, the depth of the die was decreased to prevent the concentration of deformation around the corner of the punch. On the other hand, the groove of the die was eliminated to reduce the tensile stress for the lower high strength steel sheets. The sheets below SPFC780 and SPFC980 were successively joined with the aluminium alloy sheet for the upper and lower high strength steel sheets, respectively.  相似文献   

14.
本文作者研究了不同冶炼条件和不同奥氏体化温度热处理的40CrNiMoA钢试样在蒸馏水中的应力腐蚀和腐蚀疲劳行为,测定了试样的原始奥氏体晶粒度,对晶界杂质偏聚情况进行了Auger电子能谱分析,对应力腐蚀和腐蚀疲劳断裂的初始阶段进行了扫描电镜断口观察。根据实验结果,作者认为高强度钢40CrNiMoA在蒸馏水中的应力腐蚀和腐蚀疲劳行为主要与原始奥氏体晶粒度有关。晶粒大小与裂纹前端塑性区尺寸两者的相对比较决定了断裂方式,从而决定了材料的应力腐蚀和腐蚀疲劳萌生和扩展的难易程度。  相似文献   

15.
ABSTRACT

Double-pass process was newly performed to a friction stir welded (FSWed) A3003 aluminium alloy/SUS304 stainless steel dissimilar lap joint in order to improve the asymmetry of the FSWed joint. A sound symmetrical joint was produced by running the tool again at the bead which ?rstly produced by FSW. Tensile strength of specimens was improved by leaving the tool distance from 2 mm to 5 mm where both edges of the stirred zone were advancing side (AS-AS joint). Micro-tensile test revealed that most of the stirred zone in the AS-AS joint with the tool distance of 5 mm fractured at A3003 base metal.  相似文献   

16.
Dissimilar metal joints of Zn-coated Galvannealed steel (GA steel) and commercially available pure aluminium (A1050) sheets were produced by changing the laser power and the roller pressure by the laser pressure welding method. By this method, the YAG laser beam was irradiated into a flare groove made by these dissimilar metal sheets. In addition, the laser beam was scanned at various frequencies and patterns through the lens using two-dimensional scanning mirrors. Then the sheets were pressed by the pressure rolls to be joined.

The compound layers in the weld interface were observed by an optical microscope and the layer thicknesses were measured. The thicknesses ranged from 7 to 20 μm. The mechanical properties of the welded joints were evaluated by the tensile-shear test and peel test. In the tensile-shear test, the strengths of the joints produced under the most welding conditions were so high that the fracture occurred through the base aluminium sheet. In the peel test of the specimens subjected to a laser beam of 1200–1400 W power under roller pressure of 2.94 kN, the specimen fracture took place in the base aluminium sheet. Even if the compound layer was thick, high joint strength was obtained. On the other hand, the specimen fractured in the weld interface at a laser power of 1500 W. The results of X-ray diffraction on the peel test specimen surface identified that the intermetallic compound on the GA steel side was Fe2Al5Zn0.4. Moreover, the aluminium parts adhering to the GA steel side were confirmed. These results suggest that the fracture in the peel test occurred between the compound layer and A1050 and partly in the base aluminium. A micro-Vickers hardness test was performed to examine the hardness distribution in the compound layer. The hardness values near A1050 and GA steel were about 100 and 470 Hv, respectively, which suggests that the compound layer should not necessarily consist of brittle intermetallic compounds. It is therefore concluded that laser pressure welding could produce high strength joints of GA steel and A1050 dissimilar materials.  相似文献   

17.
Summary

Offering the advantages of high welding speed and low heat distortion, laser welding is an attractive process for joining thin steel sheet. This paper describes an investigation of the static and fatigue strength of laser-welded lap joints in thin steel sheet with different sheet thicknesses and tensile strengths and compares the results with those obtained for spot-welded joints. To evaluate the static strength of the joints, a method for estimation of the joint strength and fracture mode is established. To evaluate the fatigue strength of the joints, the mixed-mode fracture-mechanics criterion of Erdogan and Sih is used, giving good characterisation of the fatigue strength, including that of the spot-welded joints.  相似文献   

18.
Cross tension tests of resistance spot welded joints with varying nugget diameter were carried out using 980 MPa high strength steel sheet of 1.6 mm thickness. In proportion, as nugget diameter increased from 3√t to 5√t (where t is thickness), cross tension strength (CTS) increased while fracture morphology simultaneously transferred from interface fracture to full plug fracture. In cases of interface fracture, circumferential crack initiation due to separation of the corona bond arose at an early stage of loading. The crack opening process without propagation was recognized until just before fracture and then the crack propagated to the nugget immediately in a brittle manner around CTS. In full plug fracture, main ductile crack initiation from the notch-like part at the end of sheet separation occurred with the sub-crack initiated at an early stage. The ductile crack propagated toward the HAZ and base material to form full plug fracture. The mode I stress intensity factor was considered as a suitable fracture parameter because the circumferential crack behaved pre-crack for brittle fracture in the nugget region at the final stage. Based on the FE analysis, the mode I stress intensity factor was calculated as 116 MPa √m at CTS as fracture toughness for the nugget. With respect to full plug fracture, ductile crack initiation behaviour from the notch-like part was expressed by concentration of equivalent plastic strain. On the assumption that the ductile crack arose in critical value of equivalent plastic strain, the value was calculated as 0.34 by FE analysis. Reasonable interpretation for interface fracture and full plug fracture in the resistance spot welded joint was proposed due to first crack initiation by stress concentration, brittle fracture by using mode I stress intensity factor, and ductile crack initiation by using equivalent plastic strain.  相似文献   

19.
Abstract

The use of high strength low alloy steels for high performance structures (e.g. pressure vessels and pipelines) requires high strength consumables to produce an overmatched welded joint. This globally overmatched multipass welded joint contains two significantly different microstructures, as-welded and reheated. In this paper, the influence of weld metal microstructure on fracture behaviour is estimated in comparison with the fracture behaviour of composite microstructures (as-welded and reheated). The lower bound of fracture toughness for different microstructures was evaluated by using the modified Weibull distribution. The results, obtained using specimens with crack front through the thickness, indicated low fracture toughness, caused by strength mismatching interaction along the crack front. In the case of through thickness specimens, at least one local brittle microstructure is incorporated in the process zone at the vicinity of the crack tip. Hence, unstable fracture occurred with small, or without, stable crack propagation. Despite the fact that the differences between the impact toughness of a weld metal and the that of base metal are insignificant, the fracture toughness of a weld metal can be significantly lower.  相似文献   

20.
采用Al Si5铝合金焊丝,冷金属过渡方法对6061铝合金和裸钢板进行了搭接点塞焊试验,运用正交试验法优化工艺参数,分析了接头的界面结构特征及其性能.结果表明,采用上述方法成功实现了铝和裸钢板的连接,点焊接头成形美观、性能良好;工艺参数显著性顺序为裸钢板孔径大小、点焊时间、送丝速度;接头为典型的点熔钎焊接头,由钎焊结合区和熔焊结合区组成;接头上的缺陷主要是气孔;接头的最大抗拉剪载荷可达4 k N以上,断裂方式为撕裂型断裂.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号