首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李昱达  张恒  王迅昶  汪锋  夏养君 《化学学报》2015,73(10):1055-1060
噻咯(silole)是一类含硅的五元环二烯, 具有很好的电子亲和力、独特的聚集态诱导发光性质和优良的电致发光性能. 研究者发现将噻咯结构单元引入分子主链中, 能够获得具有特殊光电性能的聚合物材料. 本工作合成两种2,5位为二噻吩苯并噻二唑的新型噻咯单体, 通过与芴或硅芴双硼酸酯Suzuki偶联聚合, 制备四种主链型D-A(推-拉电子结构)共聚物PF-HSTBT, PF-HOSTBT, PSiF-HSTBT和PSiF-HOSTBT. 研究表明, 四种聚合物具有较好的吸收, 光学带隙均小于1.71 eV. 电化学分析测得四种聚合物的HOMO能级均小于-5.29 eV, 通过光学带隙计算得LUMO能级均高于-3.61 eV. 以四种聚合物分别作为电子给体材料, PC61BM为受体材料, 制备了聚合物太阳能电池器件(PSCs). 由于聚合物PF-HOSTBT、PSiF-HOSTBT中的己氧基空间位阻较大, 分子平面规整性较差, 其最高光电转换效率分别为0.62%、0.83%; 而己基的空间位阻较小, 分子堆积紧密, 聚合物PF-HSTBT, PSiF-HSTBT的光伏性能较优, PSCs的最高光电转换效率分别为1.18%, 1.2%.  相似文献   

2.
The electronic performance of conjugated polymers depends on the microstructure of the polymer films. A percolated network morphology with high crystallinity, ordered intermolecular packing and long‐range order is beneficial for charge transport. In recent reports, some conjugated polymers have been shown to exhibit liquid crystallinity. The appearance of liquid crystalline ordering provides a new solution to solve the difficulties in microstructure manipulation. In this review, we summarize how liquid crystallinity can assist molecular arrangement and guide long‐range orientation during film processing, leading to high charge mobility. We expect that this article could draw more attention to the liquid crystallinity of conjugated polymers. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1572–1591  相似文献   

3.
Conjugated polymers are essential for solution‐processable organic opto‐electronic devices. In contrast to the great efforts on developing new conjugated polymer backbones, research on developing side chains is rare. Herein, we report branched oligo(ethylene glycol) (OEG) as side chains of conjugated polymers. Compared with typical alkyl side chains, branched OEG side chains endowed the resulting conjugated polymers with a smaller π‐π stacking distance, higher hole mobility, smaller optical band gap, higher dielectric constant, and larger surface energy. Moreover, the conjugated polymers with branched OEG side chains exhibited outstanding photovoltaic performance in polymer solar cells. A power conversion efficiency of 5.37 % with near‐infrared photoresponse was demonstrated and the device performance could be insensitive to the active layer thickness.  相似文献   

4.
Benzothiadiazole(BT) is an electron-deficient unit with fused aromatic core, which can be used to construct conjugated polymers for application in organic solar cells(OSCs). In the past twenty years, huge numbers of conjugated polymers based on BT unit have been developed,focusing on the backbone engineering(such as by using different copolymerized building blocks), side chain engineering(such as by using linear or branch side units), using heteroatoms(such as F, O and S atoms, and CN group), etc. These modifications enable BT-polymers to exhibit distinct absorption spectra(with onset varied from 600 nm to 1000 nm), different frontier energy levels and crystallinities. As a consequence, BT-polymers have gained much attention in recent years, and can be simultaneously used as electron donor and electron acceptor in OSCs, providing the power conversion efficiencies(PCEs) over 18% and 14% in non-fullerene and all-polymer OSCs. In this article, we provide an overview of BTpolymers for OSCs, from donor to acceptor, via selecting some typical BT-polymers in different periods. We hope that the summary in this article can invoke the interest to study the BT-polymers toward high performance OSCs, especially with thick active layers that can be potentially used in large-area devices.  相似文献   

5.

Isoregic conjugated polymers composed of thiophene and dialkoxybenzene units were designed to harvest incident light in the mid‐visible energy range (band gap of 2.1 eV). Poly(1,4‐bis(2‐thienyl)‐2,5‐diheptoxybenzene) (PBTB(OC7H15)2) and poly(1,4‐bis(2‐thienyl)‐2,5‐didodecyloxybenzene) (PBTB(OC12H25)2) have shown significant photovoltaic performance as an electron donor when used in tandem with the electron acceptor [6, 6]‐phenyl C61‐butyric acid methyl ester (PCBM) in bulk hetero‐junction photovoltaic devices. Photovoltaic devices incorporating PBTB(OC7H15)2 and PCBM have shown AM1.5 efficiencies of ~0.6% with a short circuit current density of 2.5 mA/cm2, an open circuit voltage of 0.74 V, and a fill factor of 0.32. Incident Photon‐to‐Current Efficiency (IPCE) of the device was found to be ca. 16% at 410 nm. In order to examine the relationship between the molecular structure of the polymers and their electronic energy levels, and to correlate this with photovoltaic performance, optoelectronic and electrochemical results are discussed in relation to the I‐V characteristics of the devices. Additionally, a computer‐aided simulation is used to gain further insight into the effect of polymer structure on the energetic relationships in the bulk heterojunction devices.  相似文献   

6.
A new class of donor–acceptor‐containing oligothienylenevinylenes with a triphenylamine donor and a dicyanovinyl group as acceptor has been synthesized and characterized. By extending the oligothiophene backbone, both the optical bandgaps and the charge‐transport properties can be tuned. These oligothienylenevinylene derivatives show intense charge‐transfer absorption bands that cover the entire visible spectrum, with low optical bandgaps of approximately 1.64 eV. In addition, electrochemical studies reveal that these compounds possess relatively large ionization potentials of approximately 5.5 eV. On the basis of these newly developed dicyanovinyl‐substituted chromophores as donor materials and C60 as acceptor material, bilayer organic photovoltaic devices have been fabricated, with the best device showing a high power conversion efficiency (PCE) of 2.0 %, with an open‐circuit voltage of 0.68 V and a fill factor of 0.60 after thermal annealing. The obvious morphology change with the formation of small domains in thin films and the reduction of series resistance are believed to be responsible for the dramatic performance improvement upon thermal annealing.  相似文献   

7.
基于1,2,4-三氮唑衍生物的共轭聚合物的合成及其光伏性能   总被引:1,自引:0,他引:1  
李新炜  赵斌  曹镇财  沈平  谭松庭 《化学学报》2012,70(23):2433-2439
以缺电子的1,2,4-三氮唑衍生物作为拉电子结构单元(A), 以富电子的噻吩或苯并二噻吩衍生物作为推电子结构单元(D), 通过Stille偶联聚合的方法, 合成了三种主链型D-A(推-拉电子结构)的交替共聚物PT-TZ, PB-TZ和PB-TTZT. 不同富电子结构单元可使其聚合物表现出不同的光物理性能和光伏性能. 嵌入较多的噻吩单元, 可有效增大聚合物主链的共轭长度, 拓宽其吸收光谱, 因此, 聚合物PB-TTZT的光伏性能明显优于另外两种聚合物. 以三种聚合物分别作为给体材料, 以PC61BM作为受体材料, 制备了聚合物太阳能电池(PSCs), 其中, 基于PB-TTZT的PSCs器件在AM 1.5 G模拟太阳光条件下的光电转换效率为1.18%.  相似文献   

8.
A soluble thiophene copolymer having polar and non polar side groups was synthesized and its photovoltaics performance was investigated. The synthesized copolymer was characterized using Nuclear Magnetic Resonance (NMR) and optical spectroscopy. Dye sensitized solar cells were fabricated using this copolymer as sensitizer. An open-circuit voltage of 0.50V, a short-circuit current density of 1.195 mA/cm2 and an overall power conversion efficiency of 0.3% were measured.  相似文献   

9.
The ring‐fused thiophene derivatives benzo[c]thiophene and its precursor bicyclo[2.2.2]octadiene (BCOD) have been introduced as π‐conjugated spacers for organic push–pull sensitizers with dihexyloxy‐substituted triphenylamine as donor and cyanoacrylic acid as acceptor ( OL1 , OL2 , OL3 , OL4 , OL5 , OL6 ). The effects of the fused ring on the spectroscopic and electrochemical properties of these sensitizers and their photovoltaic performance in dye‐sensitized solar cells have been evaluated. Introduction of a binary benzo[c]thiophene and ethylenedioxy thiophene as π bridge caused a significant red shift of the characteristic intramolecular charge‐transfer band to 642 nm. It is found that the sensitizer OL3 , which contains one benzo[c]thiophene unit as π linker, gives the highest overall conversion efficiency of 5.03 % among all these dyes.  相似文献   

10.
将Ullazine结构基元引入到聚合物主链或侧链中,分别与吡咯并吡咯二酮(DPP)、2,5-双(三甲基锡)噻吩共聚得到了二元共聚物PB和三元共聚物PT,分别利用凝胶渗透色谱和热重分析表征了聚合物的分子量和热稳定性,并研究了聚合物的光物理、电化学和光伏性能.基于共聚物PB和PT作为电子给体材料的聚合物太阳能电池器件测试结果表明,二元共聚物PB由于具有较低的能级水平从而获得较高开路电压,而侧链含Ullazine结构基元的三元共聚物PT具有更宽的吸收光谱和更高的空穴迁移率,获得了更高的短路电流和能量转换效率.  相似文献   

11.
Bandgap engineering in donor–acceptor conjugated microporous polymers (CMPs) is a potential way to increase the solar-energy harvesting towards photochemical water splitting. Here, the design and synthesis of a series of donor–acceptor CMPs [tetraphenylethylene (TPE) and 9-fluorenone (F) as the donor and the acceptor, respectively], F0.1CMP , F0.5CMP , and F2.0CMP , are reported. These CMPs exhibited tunable bandgaps and photocatalytic hydrogen evolution from water. The donor–acceptor CMPs exhibited also intramolecular charge-transfer (ICT) absorption in the visible region (λmax=480 nm) and their bandgap was finely tuned from 2.8 to 2.1 eV by increasing the 9-fluorenone content. Interestingly, they also showed emissions in the 540–580 nm range assisted by the energy transfer from the other TPE segments (not involved in charge-transfer interactions), as evidenced from fluorescence lifetime decay analysis. By increasing the 9-fluorenone content the emission color of the polymer was also tuned from green to red. Photocatalytic activities of the donor–acceptor CMPs ( F0.1CMP , F0.5CMP , and F2.0CMP ) are greatly enhanced compared to the 9-fluorenone free polymer ( F0.0CMP ), which is essentially due to improved visible-light absorption and low bandgap of donor–acceptor CMPs. Among all the polymers F0.5CMP with an optimum bandgap (2.3 eV) showed the highest H2 evolution under visible-light irradiation. Moreover, all polymers showed excellent dispersibility in organic solvents and easy coated on the solid substrates.  相似文献   

12.
Four novel conjugated polymers ( P1‐4 ) with 9,10‐disubstituted phenanthrene (PhA) as the donor unit and 5,6‐bis(octyloxy)benzothiadiazole as the acceptor unit are synthesized and characterized. These polymers are of medium bandgaps (2.0 eV), low‐lying HOMO energy levels (below −5.3 eV), and high hole mobilities (in the range of 3.6 × 10−3 to 0.02 cm2 V−1 s−1). Bulk heterojunction (BHJ) polymer solar cells (PSCs) with P1‐4 :PC71BM blends as the active layer and an alcohol‐soluble fullerene derivative (FN‐C60) as the interfacial layer between the active layer and cathode give the best power conversion efficiency (PCE) of 4.24%, indicating that 9,10‐disubstituted PhA are potential donor materials for high‐efficiency BHJ PSCs.

  相似文献   


13.
Summary.  Organic opto-electronic devices comprise one or more organic layers and the electrodes. The interfaces between these very different components play a crucial role to the performance of the devices. In donor–acceptor composites for photovoltaics, the electronic processes occurring at the interface will benefit from a particular interface morphology on the 10–100 nanometer level; this is demonstrated for composites of oligophenylenevinylene and C60. Phase separation on such a scale may be achieved naturally in diblock copolymers. The synthesis of an OPV–C60 diblock copolymer is described. Received June 23, 2000. Accepted (revised) July 18, 2000  相似文献   

14.
Side chains play a considerable role not only in improving the solubility of polymers for solution‐processed device fabrication, but also in affecting the molecular packing, electron affinity and thus the device performance. In particular, electron‐donating side chains show unique properties when employed to tune the electronic character of conjugated polymers in many cases. Therefore, rational electron‐donating side chain engineering can improve the photovoltaic properties of the resulting polymer donors to some extent. Here, a survey of some representative examples which use electron‐donating alkylthio and alkoxy side chains in conjugated organic polymers for polymer solar cell applications will be presented. It is envisioned that an analysis of the effect of such electron‐donating side chains in polymer donors would contribute to a better understanding of this kind of side chain behavior in solution‐processed conjugated organic polymers for polymer solar cells.

  相似文献   


15.
《中国化学》2018,36(4):280-286
We successfully designed and synthesized two BDT‐BT‐T (BDT=benzo[1,2‐b:4,5‐b']dithiophene, BT‐T=4,7‐dithien‐2‐yl‐2,1,3‐benzothiadiazole) based polymers as the electron donor for application in all‐polymer solar cells (all‐PSCs). By adopting N2200 as the electron acceptor, we systematically investigated the impact of fluorination on the charge transfer, transport, blend morphology and photovoltaic properties of the relevant all‐PSCs. A best power conversion efficiency (PCE) of 3.4% was obtained for fluorinated PT‐BT2F/N2200 (BT2F=difluorobenzo[c][1,2,5]thiadiazole) all‐PSCs in comparison with that of 2.7% in non‐fluorinated PT‐BT/N2200 (BT=benzothiadiazole) based device. Herein, all‐polymers blends adopting either non‐fluorinated PT‐BT or fluorinated PT‐BT2F exhibit similar morphology features. In depth optical spectrum measurements demonstrate that molecular fluorination can further enhance charge transfer between donor and acceptor polymer. Moreover, all‐polymer blends exhibit improved hole mobilities and more balanced carriers transport when adopting fluorinated donor polymer PT‐BT2F. Therefore, although the PCE is relatively low, our findings may become important in understanding how subtle changes in molecular structure impact relevant optoelectronic properties and further improve the performance of all‐PSCSs.  相似文献   

16.
Conjugated molecules and polymers with intrinsic quinoidal structure are promising n-type organic semiconductors, which have been reported for application in field-effect transistors and thermoelectric devices. In principle, the molecular and electronic characteristics of quinoidal polymers can also enable their application in organic solar cells. Herein, two quinoidal polymers, named PzDP-T and PzDP-ffT, based on dipyrrolopyrazinedione were synthesized and used as electron acceptors in all-polymer solar cells (all-PSCs). Both PzDP-T and PzDP-ffT showed suitable energy levels and wide light absorption range that extended to the near-infrared region. When combined with the polymer donor PBDB-T, the resulting all-PSCs based on PzDP-T and PzDP-ffT exhibited a power conversion efficiency (PCE) of 1.33 and 2.37 %, respectively. This is the first report on the application of intrinsic quinoidal conjugated polymers in all-PSCs. The photovoltaic performance of the all-PSCs was revealed to be mainly limited by the relatively poor and imbalanced charge transport, considerable charge recombination. Detailed investigations on the structure-performance relationship suggested that synergistic optimization of light absorption, energy levels, and charge transport properties is needed to achieve more successful application of intrinsic quinoidal conjugated polymers in all-PSCs.  相似文献   

17.
18.
聚合物太阳能电池(PSC)由共轭聚合物给体和富勒烯衍生物受体的共混膜(活性层)夹在ITO透明导电玻璃正极和低功函数金属负极之间所组成,具有制备过程简单、成本低、重量轻、可制备成柔性器件等突出优点,近年来成为国内外研究前沿和热点。当前研究的焦点是提高器件的光电能量转换效率,而提高效率的关键是高效共轭聚合物给体和富勒烯衍生...  相似文献   

19.
In order to provide a direction in molecular design of catechol (Cat) dyes for type II dye‐sensitized solar cells (DSSCs), the dye‐to‐TiO2 charge‐transfer (DTCT) characteristics of Cat dyes with various substituents and their photovoltaic performance in DSSCs are investigated. The Cat dyes with electron‐donating or moderately electron‐withdrawing substituents exhibit a broad absorption band corresponding to DTCT upon binding to TiO2 films, whereas those with strongly electron‐withdrawing substituents exhibit weak DTCT. This study indicates that the introduction of a moderately electron‐withdrawing substituent on the Cat moiety leads to not only an increase in the DTCT efficiency, but also the retardation of back electron transfer. This results in favorable conditions for the type II electron‐injection pathway from the ground state of the Cat dye to the conduction band of the TiO2 electrode by the photoexcitation of DTCT bands.  相似文献   

20.
《中国化学》2018,36(4):306-310
Two simple molecular acceptors, NIDBT and NIDT, bearing the same end groups of 2‐(3‐oxo‐2,3‐dihydro‐1H‐inden‐1‐ylidene)malononitrile (INCN) yet with different core units, indenofluorenodithiophene (IDBT) and indaceno[2,1‐b:6,5‐b’]dithiophene (IDT), respectively, were adopted to fabricate polymer solar cells by blending with a narrow bandgap polymer donor, PBDBTBTT‐Hex (P3). The incorporation of benzene rings into the molecular skeletons generates a negative effect on the photovoltaic performance of resultant molecular acceptor, rendering an inferior power conversion efficiency of 2.45%, compared to 4.05% for the NIDT‐based bulk‐heterojunction solar cells. Detailed comparison on photovoltaic parameters indicates that the fusion by incorporating two separated benzene rings into the IDT core renders molecular acceptor of weakened intermolecular interaction with the polymer donor, which results in over‐aggregated phase separation, unbalanced charge transport, and serious recombination within the photovoltaic devices. The work contributes to a deep understanding of the effect of skeleton‐fusion strategy for designing high‐performance molecular acceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号