首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A carbon paste electrode (CPE) modified with thionine immobilized on multi-walled carbon nanotube (MWCNT), was prepared for simultaneous determination of ascorbic acid (AA) and acetaminophen (AC) in the presence of isoniazid (INZ). The electrochemical response characteristics of the modified electrode toward AA, AC and INZ were investigated by cyclic and differential pulse voltammetry (CV and DPV). The results showed an efficient catalytic role for the electro-oxidation of AA and AC, leading to a remarkable peak resolution (∼303 mV) for two compounds. On the other hand, the presence of INZ, which is considered as important drug interference for AC, does not affect the voltammetric responses of these pharmaceuticals. The mechanism of the modified electrode was analyzed by monitoring the CVs at various potential sweep rates and pHs of the buffer solutions. Under the optimum conditions, the calibration curves for AA, AC and INZ were obtained in the range of 1 × 10−6 to 1 × 10−4 M, 1 × 10−7 to 1 × 10−4 M and 1 × 10−6 to 1 × 10−4 M, respectively. The prepared modified electrode shows several advantages such as simple preparation method, high sensitivity, long-time stability, ease of preparation and regeneration of the electrode surface by simple polishing and excellent reproducibility. The proposed method was applied to determination of AA, AC and INZ in commercial drugs and in plasma samples and the obtained results were satisfactory.  相似文献   

2.
A novel potentiometric sensor based on a molecularly imprinted polymer (MIP) for determination of promethazine (PMZ) was prepared. Promethazine MIP particles were prepared and dispersed in 2-nitrophenyloctyl ether and then embedded in a polyvinyl chloride matrix. The effect of the monomers type on the sensor performance was investigated, and an important role for this parameter was shown. It was shown that the membrane electrode with a MIP prepared by vinylbenzene and divinylbenzene had a better performance in comparison to membrane electrodes containing MIPs prepared with methacrylic acid-ethylene glycol dimethacrylate or vinylbenzene-ethylene glycol dimethacrylate. After optimization, the membrane electrode constructed with a MIP of vinylbenzene-divinylbenzene exhibited a Nernstian response (31.2 ± 1.0 mV decade−1) over a wide concentration range, from 5.0 × 10−7 to 1.0 × 10−1 M, with a low detection limit of 1.0 × 10−7 M and a response time of ∼50 s. The method has the requisite accuracy, sensitivity and precision to assay PMZ in syrup samples and biological fluids.  相似文献   

3.
A new gold nanoparticles-modified electrode (GNP/LC/GCE) was fabricated by self-assembling gold nanoparticles to the surface of the l-cysteine-modified glassy carbon electrode. The modified electrode showed an excellent character for electrocatalytic oxidization of uric acid (UA) and ascorbic acid (AA) with a 0.306 V separation of both peaks, while the bare GC electrode only gave an overlapped and broad oxidation peak. The anodic currents of UA and AA on the modified electrode were 6- and 2.5-fold to that of the bare GCE, respectively. Using differential pulse voltammetry (DPV), a highly selective and simultaneous determination of UA and AA has been explored at the modified electrode. DPV peak currents of UA and AA increased linearly with their concentration at the range of 6.0 × 10−7 to 8.5 × 10−4 mol L−1 and 8.0 × 10−6 to 5.5 × 10−3 mol L−1, respectively. The proposed method was applied for the detection of UA and AA in human urine with satisfactory result.  相似文献   

4.
Epinephrine (EP), an important neurotransmitter, energizes and speeds up the various body systems and plays an important role during the time of stress and low blood sugar level. There is a close relation between the release of epinephrine and smoking. Edge plane pyrolytic graphite electrode modified with multi-walled carbon nanotubes (MWNTs/EPPGE) has been used as a sensor for the efficient quantitative determination of epinephrine in body fluids of smokers and nonsmokers in resting stage at physiological pH 7.2 by using cyclic voltammetry (CV) and square wave voltammetry (SWV). The oxidation of epinephrine occurred in a well-defined peak having peak potential (Ep) ∼150 mV at pH 7.2. The limit of detection (3σ/slope) and limit of quantification were found to be 0.15 × 10−9 and 0.48 × 10−9 M using proposed sensor, respectively. The modified electrode was also utilized for the analysis of commercial sample of epinephrine in order to examine the accuracy of the proposed method. The analytical performance of the modified electrode has been evaluated for quantification of EP in real samples even in the presence of common coexisting biomolecules such as uric acid, ascorbic acid, dopamine and norepinephrine. The voltammetric response of the developed nanosensor towards epinephrine determination in body fluids is fast, sensitive and selective having desirable reproducibility and stability. A comparison of results with high performance liquid chromatography (HPLC) shows a good agreement.  相似文献   

5.
In the present work, a novel sensor for luminol electrochemiluminescence (ECL) was constructed on the base of a C-doped titanium oxide amorphous semiconductor electrode. The morphology, structural and electrochemical properties of the electrode was characterized by X-Ray diffraction, X-Ray photoelectron spectroscopy and electrochemical methods. The ECL behavior of luminol excited by hot electrons injected from C-doped oxide film-covered electrodes in aqueous medium has been investigated in B-R buffer solution (pH = 9) when linear sweep cyclic voltammetry (CV) was applied. Two ECL peaks were observed at −1.0 V (vs. Ag/AgCl, reduction process) and −0.75 V (vs. Ag/AgCl, oxidation process). The possible mechanism was discussed. The C-doped Ti oxide electrode shows excellent properties for sensitive determination of luminol with good reproducibility and stability. The linear response of luminol was in the range of 1 × 10−8 to 9 × 10−8 mol/L with the detection limit of 3 × 10−9 mol/L (S/N = 3). Since luminol is one of the most useful ECL probe, many bioactive compounds which can be labeled by luminol are able to be detected by using the proposed method.  相似文献   

6.
The simultaneous voltammetric determination of catechol (CC) and hydroquinone (HQ) has been achieved at a mesoporous carbon CMK-3 modified electrode in phosphate buffer solution (pH 7.0). At the electrode both CC and HQ can cause a pair of quasi-reversible and well-defined redox peaks and their peak potential difference increases. In comparison with multi-walled carbon nanotubes (MWCNTs) and Vulcan XC-72 carbon modified electrodes the CMK-3 modified electrode shows larger peak currents and higher adsorbed amounts for the two dihydroxybenzene isomers. This is related to the higher specific surface area of CMK-3. Under the optimized conditions, the linear concentration ranges for CC and HQ are 5 × 10−7 to 3.5 × 10−5 M and 1 × 10−6 to 3 × 10−5 M, respectively. In the presence of 5 μM isomer, the linear concentration range of CC (or HQ) is 5 × 10−7 to 2.5 × 10−5 M (or 5 × 10−7 to 2.0 × 10−5 M). The sensitivity for CC or HQ is 41 A M−1 cm−2 or 52 A M−1 cm−2, which is close to that without isomer. The detection limits (S/N = 3) for CC and HQ are 1 × 10−7 M after preconcentration on open circuit for 240 s.  相似文献   

7.
An electrochemical sensor for the detection of nitric oxide (NO) was developed by electrodeposition of Pt-Fe(III) nanoparticle on a glassy carbon electrode. This sensor exhibits excellent electrocatalytic activity for the oxidation of NO. A Nafion membrane coating was used to avoid the interference of nitrite and other potential interferences which may co-exist with NO in the biological systems. The effect of scan number in the electrodeposition process and the behavior of the sensor with respect to bulk pH have been studied. The catalytic peak current is found to be linear with the NO concentration over a wider range of 8.4 × 10−8 to 7.8 × 10−4 M, with a detection limit of 1.8 × 10−8 M (s/n = 3). In addition, the sensor has also good stability and anti-interference ability.  相似文献   

8.
D.R. Shobha Jeykumari 《Carbon》2009,47(4):957-2574
An approach to design a biocomposite bienzyme biosensor with the aim of evaluating its suitability as an amperometric sensor using functionalized multiwalled carbon nanotubes (MWCNTs) is presented. The biosensor is based on a bienzyme-channelling configuration, employing the enzymes glucose oxidase (GOx) and horseradish peroxidase (HRP), which were immobilized with toluidine blue (TB) functionalized MWCNTs. The proposed method demonstrates an easy electron transfer between the immobilized enzymes and the electrode via functionalized MWCNTs in a Nafion matrix. Co-immobilization of GOx and HRP was employed to establish the feasibility of fabricating highly effective bienzyme-based biosensors for low-level glucose determination. Bienzyme immobilized TB functionalized MWCNTs were attached to a glassy carbon electrode, and the electrochemical behavior of the sensor was studied using electrochemical impedance spectroscopy, cyclic voltammetry and chronoamperometry. The excellent electrocatalytic activity of the biocomposite film resulted in the detection of glucose under reduced over potential with a wider range of determination from 1.5 × 10−8 M to 1.8 × 10−3 M and with a detection limit of 3 × 10−9 M. The sensor showed a short response time (within 2 s), good stability and anti-interferant ability. The proposed biosensor exhibits good analytical performance in terms of repeatability, reproducibility and shelf-life stability.  相似文献   

9.
Nano-γ-Al2O3 is dispersed onto the glass carbon electrode (GCE) by polishing. This nanostructured modified GCE exhibits a great enhancement to the redox responses of 3-nitrobenzaldehyde thiosemicarbazone (3-NBT). In comparison with bare GCE, 3-NBT gives a more sensitive voltammetric response because of the nanoparticle’s unique properties. The lowest detectable concentration (3σ) of 3-NBT is estimated to be 1.18 × 10−6 M (accumulation for 4 min). The linear relationship between peak current and concentration of 3-NBT holds in the range 1.0 × 10−5 M to 1.0 × 10−4 M (r = 0.9981). The electrochemical properties of 3-NBT on this modified electrode have been investigated with various electrochemical methods. The results indicate that the transference of one electron and one proton involves electrode radical reaction processes I and II, respectively. The coverage value (Γ) of 1.62 × 10−9 mol cm−2 was calculated and the electrochemical parameters, diffusion coefficient D (2.54 × 10−3 cm2 s−1, 2.03 × 10−3 cm2 s−1) and reaction rate constant ks (5.9573 s−1, 7.15 × 10−2 cm s−1) were obtained for quasi-reversible system I and irreversible system II, respectively.  相似文献   

10.
Cyclic voltammetry (CV) was used to investigate electrochemical behavior of sodium tanshinone IIA sulfonate (STS) and the interaction between STS and salmon sperm DNA. STS had excellent electrochemical activity on the glassy carbon electrode (GCE) with a couple reversible redox peaks. In pH 4.0 phosphate buffer solution (PBS), the binding ratio between STS and salmon sperm DNA was calculated to be 1:1 and the binding constant was 1.67 × 104 L/mol. A chronic myelogenous leukemia (CML, Type b3a2) DNA biosensor was developed by immobilizing covalently single-stranded CML DNA fragment to a modified GCE. The surface hybridization of the immobilized single-stranded CML DNA fragment with its complementary DNA fragment was evidenced by electrochemical methods using STS as a novel electrochemical indicator, with a detection limit of 6.7 × 10−9 M and a linear range from 2.0 × 10−8 M to 2.0 × 10−7 M. Selective determination of complementary ssDNA was achieved using differential pulse voltammetry (DPV).  相似文献   

11.
Conducting polypyrrole membranes were deposited on glassy carbon electrodes by electropolymerizing pyrrole in the presence of Eriochrome Blue-Black B (EBB) as the counter anion. The electrodes were then subjected to several oxidation/reduction potential steps in pure silver nitrate solution for successive accumulation/stripping of silver species. This electrochemically mediated doping/templating generated selective recognition elements in the EBB/PPy film for silver ions. The resulting sensor exhibited a considerable enhancement in the potentiometric and voltammetric response characteristics: extending the linear dynamic range and lowering the detection limit. In the potentiometric mode, the sensor showed highly reproducible response with a Nernstian slope of 58.5 ± 0.3 mV per decade of Ag+ activity over a linear range spanning seven orders of magnitude (1 × 10−8 to 1 × 10−1 M Ag+), with a detection limit of ∼6 × 10−9 M. The electrodes demonstrated high selectivity over a large number of cations including alkali, alkaline earth and several transition and heavy metal ions, and could be used over a wide pH range of 1-8.5. The EBB/PPy modified electrode was also used for preconcentration and differential pulse anodic stripping voltammetric (DPASV) measurements. The DPASV peak current was dependent on the concentration of Ag+ over the range 3 × 10−10 to 1 × 10−4 M. The presence of 1000-fold excess of Cd2+, Cu2+, Cr3+, Co2+, Mn2+, Fe2+, Fe3+, Ni2+ and Pb2+ can be tolerated in the determination of silver ion.  相似文献   

12.
Voltammetric behavior of folic acid at plain carbon paste electrode and electrode modified with calixarenes has been studied. Two peaks for irreversible oxidation were observed. Out of the three calixarenes chosen for modification of the electrodes, p-tert-butyl-calix[6]arene modified electrode (CME-6) was found to have better sensitivity for folic acid. Chronocoulometric and differential pulse voltammetric studies reveal that folic acid can assemble at CME-6 to form a monolayer whose electron transfer rate is 0.00273 s−1 with 2-electron/2-proton transfer for the peak at +0.71 V against SCE. An adsorption equilibrium constant of 5 × 103 l/mol for maximum surface coverage of 2.89 × 10−10 mol/cm2 was obtained. The current is found to be rectilinear with concentration by differential pulse voltammetry. However, linearity in the lower range of concentration 8.79 × 10−12 M to 1.93 × 10−9 M with correlation coefficient of 0.9920 was achieved by adsorptive stripping voltammetry. The limit of detection obtained was found to be 1.24 × 10−12 M. This method was used for the determination of folic acid in a variety of samples, viz. serum, asparagus, spinach, oranges and multivitamin preparations.  相似文献   

13.
A carbon-paste electrode (CPE) chemically modified with the cobalt(II)-4-methylsalophen (CoMSal) as a Schiff base complex was used as a highly sensitive and fairly selective electrochemical sensor for simultaneous determination of minor mounts of ascorbic acid (AA) and cysteine. This modified electrode shows very efficient electrocatalytic activity for anodic oxidation of both AA and cysteine via substantially decreasing of anodic overpotentials for both compounds. The mechanism of electrochemical oxidation of both AA and cysteine using CoMSal-modified electrode was thoroughly investigated by cyclic voltammetry and polarization studies. Results of cyclic voltammetry (CV) and differential pulse voltammetry (DPV) using this modified electrode show two well-resolved anodic waves for the oxidation of AA and cysteine, which makes it possible for simultaneous determination of both compounds. A linear range of 1 × 10−4 to 5 × 10−7 M for cysteine in a constant concentration of 1 × 10−4 M AA in buffered solution (as a background electrolyte) was obtained from DPV measurements using this electrode. The linear range, which is obtained for AA in the presence of 1 × 10−4 M cysteine, was in the range of 1 × 10−4 to 1 × 10−6 M. The modified electrode has good reproducibility (RSD ≤ 2.5%), low detection limit (sub-micromolar) and high sensitivity for the detection of both AA and cysteine with a very high stability in its voltammetric response. Differential pulse voltammetry using the modified electrode exhibited a reasonable recovery for a relatively wide concentration range of cysteine spiked to a synthetic human serum sample.  相似文献   

14.
This work describes the electrochemical properties of cobalt tetra-aminophthalocyanine (CoTAPc) complex electropolymerized at the surface of multi-walled carbon nanotube (MWCNT) abrasively immobilized onto a basal plane pyrolytic graphite electrode (BPPGE). The constructed electrode displayed excellent electrocatalytic behaviour towards the oxidation of the herbicide, asulam, as evidenced by the enhancement of the oxidation peak current (∼6 times) and the shift in the oxidation potential to lower values (by ∼120 mV) in comparison with the bare BPPGE. The chronoamperometric detection of asulam which was carried out in 0.10 M phosphate buffer (pH 7.0) at a fixed potential of 0.65 V (versus Ag|AgCl) yielded excellent analytical parameters; a linear concentration range of 4.5-20 μM, a sensitivity of 241 × 10−3 μA/μM, a detection limit of 1.15 μM asulam (using the YB + 3σ criterion) and a response time of ∼2 s.  相似文献   

15.
A carbon nanotube paste electrode modified in situ with Triton X 100 was developed for the individual and simultaneous determination of acetaminophen (ACOP), aspirin (ASA) and caffeine (CF). The electrochemical behavior of these three molecules was investigated employing cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), chronocoulometry (CC) and adsorptive stripping differential pulse voltammetry (AdSDPV). Kramers-Kronig transformation implied that the resulting impedance data were validated and were of very good quality. These studies revealed that the oxidation of ACOP, ASA and CF is facilitated at an in situ surfactant-modified multiwalled carbon nanotube paste electrode (ISSM-CNT-PE). After optimization of analytical conditions employing this electrode at pH 7.0 in phosphate buffer (0.1 M), the peak currents for the three molecules were found to vary linearly with their concentrations in the range of 2.91 × 10−7-6.27 × 10−5 M with detection limits of 2.58 × 10−8, 8.47 × 10−8 and 8.83 × 10−8 M for ACOP, ASA and CF respectively using AdSDPV. The prepared modified electrode showed several advantages, such as a simple preparation method, high sensitivity, very low detection limits and excellent reproducibility. Furthermore, the proposed method was employed for the simultaneous determination of ACOP, ASA and CF in pharmaceutical formulations, urine and blood serum samples and the obtained results were found to be satisfactory.  相似文献   

16.
A glassy carbon electrode modified with CeO2 nanoparticles was constructed and was characterized by electrochemical impedance spectrum (EIS) and cyclic voltammetry (CV). The resulting CeO2 nanoparticles modified glassy carbon electrode (CeO2 NP/GC electrode) was used to detect uric acid (UA) and ascorbic acid (AA) simultaneously in mixture. This modified electrode exhibits potent and persistent electron-mediating behavior followed by well-separated oxidation peaks towards UA and AA with activation overpotential. For UA and AA in mixture, one can well separate from the other with a potential difference of 273 mV, which was large enough to allow the determination of one in presence of the other. The DPV peak currents obtained in mixture increased linearly on the UA and AA in the range of 5.0 × 10−6 to 1.0 × 10−3 mol/L and 1.0 × 10−6 to 5.0 × 10−4 mol/L, with the detection limit (signal-to-noise ratio was 3) for UA and AA were 2.0 × 10−7 and 5.0 × 10−6 mol/L, respectively. The proposed method showed excellent selectivity and stability, and the determination of UA and AA simultaneously in serum was satisfactory.  相似文献   

17.
A glassy carbon electrode modified with LaHCF was constructed and was characterized by cyclic voltammetry (CV) and electrochemical impedance spectrum (EIS). The resulting LaHCF modified glassy carbon electrode had a good catalytic character on uric acid (UA) and was used to detect uric acid and ascorbic acid (AA) simultaneously. This modified electrode exhibits potent and persistent electron-mediating behavior followed by well-separated oxidation peaks towards UA and AA with activation overpotential. For UA and AA in mixture, one can well separate from the other with a potential large enough to allow the determination of one in presence of the other. The DPV peak currents obtained increased linearly on the UA in the range of 2.0 × 10−7 to 1.0 × 10−4 mol/L with the detection limit (signal-to-noise ratio was 3) for UA 1.0 × 10−7 mol/L. The proposed method showed excellent selectivity and stability, and the determination of UA and AA simultaneously in urine was satisfactory.  相似文献   

18.
The electrochemistry of bisoprolol fumarate (BF) has been investigated by differential pulse voltammetry at a single-wall carbon nanotubes (SWNTs) modified glassy carbon electrode (GCE). The prepared electrode showed an excellent electrocatalytic activity towards the oxidation of BF leading to a marked improvement in sensitivity as compared to bare glassy carbon electrode where electrochemical activity for the analyte cannot be observed. The SWNTs-modified GCE exhibited a sharp anodic peak at a potential of ∼950 mV for the oxidation of BF. Under optimum conditions linear calibration curve was obtained over the BF concentration range 0.01-0.1 mM in 0.5 M phosphate buffer solution (pH 7.2) with a correlation coefficient of 0.9789 and detection limit of 8.27 × 10−7 M. The modified electrode has been applied for the drug determination in human urine with no prior extraction and in commercial tablets. The proposed method has also been validated.  相似文献   

19.
A potentiometric aluminium sensor, based on the use AlMCM-41 as a neutral carrier, in poly(vinyl chloride) (PVC) matrix, is reported. The sensor exhibits significantly enhanced selectivity toward Al3+ ions over the concentration range 1.0 × 10−7 to 1.0 × 10−1 M with a detection limit of 8.6 × 10−8 M and a Nernstian slope of 19.5 ± 0.4 mV/decade of activity. The best performance was obtained with membrane composition 30% poly(vinyl chloride), 67% acetophenone, 3% ionophore and 2 mL tetrahydrofuran. Fast and stable response, good reproducibility and long-term stability are demonstrated. The response time of the sensor is ∼10 s and membrane could be used over a period of 3 months without any considerable divergence in potentials. Selectivity coefficients were determined by matched potential method (MPM). The AlMCM-41-based sensor is suitable for use in aqueous solution of pH 3-6. The standard electrode potentials were determined at different temperatures and used to calculate the isothermal coefficient of the electrode. It was used to determine Al3+ in drugs and food products.  相似文献   

20.
A gold electrode surface was modified using a dinuclear copper complex [CuII2 (Ldtb)(μ-OCH3)](BPh4) and then coated with a chitosan film. This biomimetic polymer film-coated electrode was employed to eliminate the interference from ascorbic acid and uric acid in the sensitive and selective determination of dopamine. The optimized conditions obtained for the biomimetic electrode were 0.1 M phosphate buffer solution (pH 8.0), complex concentration of 2.0 × 10−4 M, 0.1% of chitosan and 0.25% of glyoxal. Under the optimum conditions, the calibration curve was linear in the concentration range of 4.99 × 10−7 to 1.92 × 10−5 M, and detection and quantification limits were 3.57 × 10−7 M and 1.07 × 10−6 M, respectively. The recovery study gave values of 95.2-102.6%. The lifetime of this biomimetic sensor showed apparent loss of activity after 70 determinations. The results obtained with the modified electrode for dopamine quantification in the injection solution matrix were in good agreement with those of the pharmacopoeia method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号