首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过同轴静电纺丝技术,采用不同内径针头制备了皮芯结构聚偏氟乙烯-六氟丙烯@聚间苯二甲酰间苯二胺(PVDF-HFP@PMIA)纳米纤维膜,对制得的纤维膜进行热处理后测试其充放电及高温熔断性能.结果表明:19G(内径0.7 mm)针头制备的纤维膜,其断裂强度为26.6 MPa,孔隙率89.31%,电解液吸液率达到627.78%,经240℃高温处理未发生明显的收缩变形;组装该隔膜的纽扣电池的离子电导率达到7.55 mS·cm-1,电化学稳定窗口良好,首次放电比容量和库伦效率分别为142.6 mAh·g-1和91.87%,在0.2C倍率下50次循环后的放电比容量仍保持在144.8 mAh·g-1左右;在1C和5C的高倍率充放电性能上展现出优于商业Celgard隔膜的潜力.180℃高温熔断后隔膜的孔隙被熔融的皮层材料堵塞,形成了致密的膜状结构,界面阻抗由91.5急剧增大到603.7,说明熔断后Li+很难再通过隔膜进行迁移.  相似文献   

2.
静电纺丝技术制备PAN/PVDF-HFP复合纳米纤维膜,对PAN/PVDF-HFP/PAN三层结构复合膜进行热压处理,对其力学性能进行分析评价,最后组装纽扣型超级电容器,并对其电化学性能进行分析测试.结果表明:静电纺PAN纺丝溶液中DMF/丙酮溶剂体系的最佳配比为7∶3;PAN/PVDF-HFP热压复合最佳温度和时间为120℃和60 s,此时复合膜的断裂强度为13.5 MPa;PAN/PVDF-HFP复合膜作为超级电容器隔膜,其等效串联电阻(ESR)为0.57Ω,小于商品膜Celgard2400的0.64Ω;,CV曲线在5 m V/s扫速下仍保持较好的矩形特征,GCD曲线在0.05 A/g电流密度下比容量为79.55 F/g,高于商品膜Celgard2400的62.78 F/g.  相似文献   

3.
采用共沉淀法在不同pH条件下制备得到球形的前驱体,通过固相法与锂源合成正极材料Li[Li0.2Ni0.2Mn0.6]O2,对样品进行了XRD、SEM以及电化学性能分析。结果表明:制得的前驱体呈球状颗粒,其中pH=8.0时制得的前驱体的结晶度和球形形貌最理想;合成的正极材料具有层状结构,在950℃下合成的材料电化学性能和循环稳定性最佳,在2.04.8 V、0.2 C条件下,首次放电比容量为220.4 m Ah/g,循环20次后保持率高达97%。此外,该材料的倍率性能也最好,在1 C下充放电,其放电比容量仍保持200.9 m Ah/g。 更多还原  相似文献   

4.
以MnO_2/PAN/DMF为前驱体,通过静电纺丝和惰性气氛下退火处理制备出MnO/C纳米纤维,对样品进行了XRD、SEM以及电化学性能分析。结果表明:制得的复合膜纤维直径为300~500 nm;其中MnO_2添加量为1.0g时制得的纳米纤维膜的形貌和性能最理想,当电流密度为1.0 A·g~(-1)时,经过200个循环,容量仍然保持在320mA·h·g~(-1);在电流密度3.0 A·g~(-1)下,可逆容量为201 mA·h·g~(-1),展现了极好的倍率性能和循环性能。  相似文献   

5.
利用金属有机框架材料丰富的孔结构来吸附由电池正极产生的溶解性多硫化物,以及科琴黑优良的导电性来减小界面阻抗、活化被吸附的多硫化物,提高电池放电比容量及循环稳定性。采用原位生长法,在玻璃纤维膜表面沉积三种具有不同孔结构的金属有机框架材料UIO-66、MOF-5和ZIF-8;随后在玻纤膜表面涂覆科琴黑,并将其用作锂硫电池隔膜。研究表明:仅用涂覆科琴黑的玻璃纤维膜作为电池隔膜时,锂硫电池在0.2 C倍率下首圈放电比容量为967.4 mAh/g,在循环50圈后容量仅剩730.8 mAh/g;采用不同的金属有机框架材料原位生长的玻璃纤维膜,将其作为锂硫电池隔膜时,锂硫电池表现出不同的循环性能;当使用孔径最大且孔结构最为丰富的UIO-66改性的玻璃纤维膜作为锂硫电池隔膜时,锂硫电池的循环性能最为优异,在0.2 C倍率下首圈放电比容量达1270.1 mAh/g,100圈后仍有827.7 mAh/g。该研究结果为锂硫电池隔膜的制备及改性提供了一种参考方法。  相似文献   

6.
聚合物锂离子电池具有安全、使用方便等特点,是当今最重要的新能源材料之一,研究和开发新型聚合物电解质是聚合物电池的核心内容。以聚甲基丙烯酸甲酯(PMMA)为聚合物基体,通过与苯乙烯(St)、三甲基丙烷三丙烯酸酯(TMPTA)进行交联共聚改性,复合有机锂盐改性纳米Si O2,通过相转化法制备多孔复合聚合物电解质膜。通过红外光谱(FT-IR)、X射线衍射(XRD)对复合聚合物膜结构进行了表征,采用扫描电镜(SEM)对该复合聚合物膜的孔形态进行了观察,采用热失重分析(TG)和差示扫描量热法(DSC)考察了复合聚合物膜热学性能,制备了结构可控、热稳定好的Si O2/P(MMA-S)纳米复合电解质。电化学研究表明:含有6%的改性纳米Si O2的电化学窗口达5.48 V,在0.1 C和0.2 C的倍率下,首次放电容量可达156.8 m Ah·g-1和147.6 m Ah·g-1,经过30次循环测试,容量保持率在93.5%和91.4%。更多还原  相似文献   

7.
为了提高TiO_2的导电性和材料的分散性,进而提高材料的倍率性能和循环性能,将二氧化钛与石墨烯复合,通过水热法合成了二氧化钛/石墨烯(TiO_2/rGO)复合材料,并对材料的形貌进行了表征,测试了材料用于锂离子电池的电化学性能.结果表明:与石墨烯复合后材料的比容量和倍率性能均升高,在电流密度为0.1C(C=150 mA/g)下,初始放电容量为374 mAh/g,50周后的放电比容量仍保持在165 mAh/g,循环保持率为44%,远高于同种方法下合成的二氧化钛样品50周后的比容量50 mAh/g和保持率17%.  相似文献   

8.
为解决锂金属作为负极时锂金属/电解液界面的不稳定性和锂金属表面可能出现的锂枝晶生长问题,利用聚乙烯亚胺(PEI)与聚丙烯酸(PAA)的静电吸引作用包覆碳纳米管(CNT),通过真空抽滤的方式制备了PEI与PAA包覆CNT(CNT@PP)膜,对其微观形貌和分子结构进行表征,并将CNT@PP膜作为锂金属负极的保护层组装为电池,对电池的循环稳定性能、倍率性能和循环性能进行测试。结果表明:PEI和PAA均匀附着在碳纳米管上,并形成纳米级孔道结构;PEI与PAA具有强静电作用;在1.0 mA/cm2的电流密度下,Li‖Li对称电池能稳定循环250 h,表明CNT@PP膜有利于锂的均匀沉积和界面稳定;在全电池恒流充放电中,CNT@PP膜能明显提高全电池的倍率性能,2.0 C下比容量达91 mAh/g,而无保护电池的比容量仅为22 mAh/g;在0.5 C长循环测试中,CNT@PP膜保护的电池可稳定循环200圈,并有75.21%的容量保持率。该研究表明,CNT@PP膜可以有效地保护锂金属负极,是改善锂金属电池的可行策略。  相似文献   

9.
为提高锂离子电池正极材料硅酸亚铁锂(Li2FeSiO4)的容量和倍率性能,以酒石酸为碳源、尿素为氮源,用溶胶凝胶法制备氮掺杂碳包覆硅酸亚铁锂复合材料(NCLFS),通过元素分析、XRD、SEM、拉曼光谱、XPS、恒电流充放电测试和交流阻抗谱等方法对样品的结构及电化学性能进行表征。结果表明:NCLFS复合材料由平均粒径为23 nm的Li2FeSiO4纳米晶组成,较小的粒径能够缩短锂离子扩散路径,提高锂离子的迁移速率;N的引入,提高了NCLFS材料的电导率;与无尿素掺杂的CLFS材料相比,NCLFS复合材料表现出了更高的比容量、优异的倍率性能和循环稳定性,0.2 C放电倍率下,放电比容量高达223.2 mA·h/g(相当于1.34Li+),循环100周后仍能保持192.9 mA·h/g。  相似文献   

10.
1,2,3-三(2-氰氧基)丙烷(1,2,3-Tris(2-cyanoethoxy) propane,TPPN)作为一种新的电解液添加剂,可应用于4.55V高电压钴酸锂(LiCoO2)/石墨软包电池。通过对比不含和含有TPPN添加剂的锂电池的循环性能,发现加入质量分数为2%的TPPN能大幅提高电池性能。3.00~4.55 V下以1C/1C倍率充放电,含有2%TPPN的电池在25℃下循环900周容量保持率为86.4%,而未添加TPPN的样品仅为8.7%。从理论计算和线性扫描数据可知,TPPN较电解液溶剂优先分解。从LiCoO2表面上X射线光电子能谱的N 1s谱可知,TPPN在钴酸锂表面形成界面膜。从阻抗数据可知,该界面膜具有低阻抗和高稳定性质。从理论计算、LiCoO2表面上扫描、透射电镜、X射线衍射谱和石墨表面上X射线光电子能谱的Co 2p谱可知,该界面膜能有效抑制电解液分解和钴离子的溶出,确认了界面膜的高稳定性质。  相似文献   

11.
利用水热酸洗法对固废磷化渣进行提纯,以得到纯度较高的FePO_4·2H_2O为铁源,通过碳热还原法制备LiFePO_4/C正极材料。研究结果表明:当焙烧温度为750?C时,制得的LiFePO_4/C材料晶体结构良好,首次放电比容量为151.9 m A·h/g,首次库伦效率为93.5%;在10 C倍率下容量保持率为65.0%;经过80周循环后,放电比容量基本不衰减,表现出较好的倍率和循环性能。  相似文献   

12.
本文以Li2CO3 、MnO2为原料,采用微波热处理合成锂离子电池正极材料LiMn2O4,研究了热处理温度,Li/Mn摩尔比对产物结构和电化学性能的影响,同时研究了微波热处理和传统热处理两种加热方式的差别.通过X射线衍射(XRD)、扫描电镜(SEM)、恒电流充放电测试分别对产物的结构、形貌及电化学性能进行表征,结果表明:采用微波法在750℃保温15 min,快速地制备出尖晶石型LiMn2O4,纯度高,尺寸分布均匀,约100-300 nm;于0.1C倍率下,以微波法制备的正极材料首次放电比容量可达112.38 mA·h/g,1C倍率充放电50次循环后,容量保持率为91.6%;以传统方法制备的正极材料0.1C倍率下首次放电比容量为94.07 mA·h/g,1C倍率充放电50次循环后,容量保持率为71.4%  相似文献   

13.
以废旧汽车刹车片为原料,在N2气氛下600~1 000?C热解制得硬炭材料。以酚醛树脂为对比实验,通过热重分析(Thermal gravimetric analysis)、扫描电子显微镜(Scanning electron mcroscope)、X射线衍射仪(X-ray diffraction)、红外光谱(Fourier transform infrared spectroscopy)分析、拉曼光谱(Raman spectroscopy)分析等测试手段对硬炭进行表征,并分别对将2种材料作为锂离子电池负极材料制备的扣式电池进行充放电性能测试。测试结果表明:热解温度对硬炭结构和充放电性能有一定的影响,在600~1 600?C温度范围内,热解碳在1 300?C条件下表现最优充放电性能,可逆容量和库伦效率分别为112.05 m A·h/g和52.31%,倍率和循环容量保持率分别达到87.23%和64.39%;对比酚醛树脂在最佳热解条件1 200?C的充放电数据,即可逆容量和首次库伦效率分别为189.26 m A·h/g和58.45%,倍率和循环的容量保持率分别为51.52%和55.12%。因此,废旧汽车刹车片热解碳在实际应用中具有较好回收价值。  相似文献   

14.
尖晶石锰酸锂(LiMn 2O 4)是低成本锂离子电池的理想正极材料。采用动态水热法成功地一步合成了一系列粒径较小(<50 nm)且分布较窄的LiMn 2O 4材料,并运用XRD,SEM,CV,EIS和充放电测试等多种方法表征其晶相、形貌和电化学性能。研究结果表明水热温度对产物成分和电化学性能有很大影响。在180℃和200℃条件下制得的LiMn 2O 4材料为纯相尖晶石晶型。180℃合成的材料具有更好的电化学性能,在1 C倍率循环时,LiMn 2O 4材料的首次放电比容量为102.4 mAh/g,循环50周后容量保持率为95.5%。600℃热处理对材料结构和性能具有明显的改善作用,1 C倍率循环时,首次放电比容量达到112.7 mAh/g,循环50周后容量保持率为94.2%。研究成果为低成本锰酸锂正极材料的制备提供了一条理想的工艺路线。  相似文献   

15.
选用热稳定性好、介电性能优良的聚酰亚胺(PI)聚合物,采用静电纺丝技术制备PI纳米纤维膜,改性后再与改性PE商业隔膜复合,制备PI/PE/PI复合隔膜,用于锂离子电池隔膜。测试结果表明,复合膜相对于商业隔膜在热安全性、电化学性能方面优于商业PP/PE/PP三层隔膜,兼具低温热闭孔性和高温热暴走性能,机械性能完全满足锂电隔膜的要求,具有良好的应用前景。  相似文献   

16.
新型锂离子电池负极材料Li1.1VO2的 合成和电化学性能   总被引:1,自引:1,他引:0  
采用高温固相反应法合成了新型锂离子电池负极材料Li1.1VO2。用X射线衍射仪、扫描电子显微镜和恒电流充放电法研究了不同温度下合成的Li1.1VO2试样的结构、形貌和电化学性能。实验结果表明:1 100℃下合成的Li1.1VO2试样结构完整、颗粒大小均匀,具有最佳的电化学性能。在0.1C、1C倍率下,放电容量分别为313.2,210.5 mA.h/g;在1C倍率下,经过50次循环后,放电容量保持率高达95.45%。  相似文献   

17.
环境问题和能源问题使当下社会对高效友好的储能器件的研究越来越紧迫。储量丰富且安全无毒的钠离子电池引起人们的注意。金属氧化物因其较高的理论容量、丰富的储存和低廉的成本而成为应用前景极广的钠离子电池负极材料。通过液相合成法制备出对苯二甲酸铁前驱体,结合后续的真空退火成功地制备出纳米级γ-Fe_2O_3/C。用制备的γ-Fe_2O_3/C作钠离子电池电极材料时,该电极表现出良好的电化学性能,在电流密度为50 mA/g时,经过100次充放电循环后可逆容量高达277.67 mAh/g,容量保持率为74.63%;在经过高倍率放电-充电循环,电流密度再次降到50 mA/g时,可逆容量可恢复到305.54 mAh/g,容量保持率为93.77%,库伦效率为99.6%。说明在γ-Fe_2O_3作为钠离子电池负极电极材料时,通过碳材料的包覆以及纳米化可以优化其循环性能,为后续研究电极材料的合成方法和储钠性能提供可行的途径。  相似文献   

18.
采用高温固相反应法合成了新型锂离子电池负极材料Li1.1VO2。用X射线衍射仪、扫描电子显微镜和恒电流充放电法研究了不同温度下合成的Li1.1VO2试样的结构、形貌和电化学性能。实验结果表明:1 100℃下合成的Li1.1VO2试样结构完整、颗粒大小均匀,具有最佳的电化学性能。在0.1C、1C倍率下,放电容量分别为313.2,210.5 mA.h/g;在1C倍率下,经过50次循环后,放电容量保持率高达95.45%。  相似文献   

19.
《焦作工学院学报》2019,(6):146-150
为提高锂离子电池正极材料LiNi_(0.8)Co_(0.2)O_2的综合电化学性能,采用高温固相法对其表面进行ZrO_2包覆。以X射线衍射、扫描电子显微镜、电化学阻抗和电化学充放电等方法对材料进行表征。结果显示,ZrO_2可均匀分布在LiNi_(0.8)Co_(0.2)O_2表面而不影响其晶体结构,但对电化学性能影响明显,即首次放电容量略有降低,由168.25 mAh/g降到157.43 mAh/g;1C、2C倍率性能有较大改善,循环性能的提高尤其突出,在100周循环内,LiNi_(0.8)Co_(0.2)O_2的容量保持率从90.68%提高到97.70%。其原因是:(1)包覆层有效避免了电解液与正极材料直接接触、抑制副反应的发生;(2)包覆过程中生成的Li_2ZrO_3提高了材料的离子导电性。该研究结果为改善锂离子电池正极材料综合电化学性能提供了简便、有效的方法。  相似文献   

20.
以Li2CO3、Ni CO32Ni OH24H2O、Co CO3H2O和Mn CO3为原料,采用高温固相法,制备了Li1.1Ni1/3Co1/3Mn1/3O2正极材料.通过X射线衍射仪(XRD)和扫描电子显微镜(SEM)对材料的结构和形貌进行了表征,并采用恒电流充放电测试系统对该材料的电化学性能进行测试.结果表明:第2次球磨时加锂盐合成的Li1.1Ni1/3Co1/3Mn1/3O2样品结构完整,为-Na Fe O2型二维层状结构,属于R-3m空间群,且该样品的阳离子混排程度较低,颗粒大小比较均匀.该样品在0.1 C放电倍率和2.4~4.6 V电压范围的首次放电比容量为182.7 m Ah/g,循环57次后,容量的仍高达保持率为95.1%,表现出良好的循环性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号