首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
A physiologically based extraction test (PBET) was run for the extraction of six metals (Cu, Zn, Cd, Cr, Ni and Pb) in four composts containing high concentrations of heavy metals. An aqueous solution of pepsin plus citric, acetic, and malic acids buffered to pH 2 was used to simulate the gastric mixture, and an extraction of 1 h at 37 °C was run with a solid:liquid ratio of 1:100. The results were compared to those obtained using water and CaCl2–DTPA solution. The PBET extracted far more metals than water, but less than CaCl2–DTPA for Cu, Pb and Cr, while giving similar or slightly lower results for Cd, Zn, and Ni.  相似文献   

2.
Currently, heavy metal (HM) contamination in greenhouse soils is a significant concern due to the rapid expansion of greenhouse agriculture. However, it is difficult to accurately assess HM pollution in greenhouse soils in China due to the lack of local geochemical baseline concentrations (GBCs) or corresponding background values. In the present study, the GBCs of HMs in Dongtai, a representative greenhouse area of China, were established from subsoils using cumulative frequency distribution (CFD) curves. The pollution levels of HMs and potential ecological risks were investigated using different quantitative indices, such as geo-accumulation index (Igeo), pollution index (PI), pollution load index (PLI) and ecological risk index (RI), based on these regional GBCs. The total concentrations of six metals (Cd, Cr, Cu, Ni, Pb and Zn) in surface soils were determined and shown to be lower than the concentrations reported in other greenhouse regions of China. The GBCs of Cd, Cr, Cu, Ni, Pb and Zn were 0.059–0.092, 39.20–54.50, 12.52–15.57, 20.63–23.26, 13.43–16.62 and 43.02–52.65 mg kg−1, respectively. Based on this baseline criterion, Cd, Pb and Zn accumulated in the surface soils because they were present at concentrations higher than their baseline values. The soils were moderately polluted by Cd according to the Igeo values, and the PI results indicated that moderate Cd contamination was present in this area. The large variation of Igeo value of Cd revealed that Cd in this area was likely influenced by agricultural activities. The PLI showed that most of the study area was moderately polluted. However, an analysis of the RI showed that the investigated HMs had low ecological risks. Correlation analysis and principle component analysis suggested that the Cd, Pb and Zn in the greenhouse soils mainly originated from anthropogenic sources (agricultural activities, atmospheric deposition etc.), while Cr, Cu, and Ni originated from natural sources. The findings of this study illustrated the necessity of GBC establishment at the local scale to facilitate more accurate HM evaluation of greenhouse soils. It is advisable to pay more attention to Cd, which could cause environmental problems in the greenhouse system.  相似文献   

3.
The concentrations of heavy metals in the roots, rhizomes, stems and leaves of the aquatic macrophyte Phragmites australis (common reed), and in the corresponding water and sediment samples from the mouth area of the Imera Meridionale River (Sicily, Italy), were investigated to ascertain whether plant organs are characterized by differential accumulation, and to test the suitability of the various organs for heavy metal biomonitoring of water and soil. Heavy metals considered were Cd, Cr, Cu, Hg, Mn, Ni, Pb, Zn. Results showed that belowground organs were the primary areas of metal accumulation. In particular, metal concentrations in plant organs decreased in the order of root > rhizome  leaf > stem. All four organs showed significant differences in concentration for Cr, Hg, Mn, Zn, thus suggesting low mobility from roots to rhizomes and to aboveground organs. Although the organs followed different decreasing trends of metal concentration, the trend Mn > Zn > Pb > Cu was found in each plant organ. Mn showed the highest concentrations in all organs whereas the lowest concentrations regarded Cd and Cr in the belowground and aboveground organs, respectively. The toxic threshold was exceeded by Cr in roots, rhizomes and leaves, Mn in roots and leaves, Ni in roots. The highest average concentrations were found as follows: Cd, Hg, Pb, Zn in root, Cr, Mn, Ni in sediment, Cu in water. Positive linear relationships were found between heavy metal concentrations in all plant organs and those in water and sediment, thus indicating the potential use of such organs for pollution monitoring of water and sediment. Advantages of using plant species as biomonitors, especially Phragmites australis, were also discussed.  相似文献   

4.
The present study was performed at a heavy-traffic affected soil to examine the efficacy of bioaccumulation and translocation potentials of heavy metals by the naturally growing weed Plantago major. Heavy metals were analyzed in soil as well as in plant below- and above-ground parts along different distances from a heavy-traffic highway. All the investigated soil heavy metals, except Cd, varied significantly, while pH and E.C had no significant difference, with increasing distance from the highway. Likewise, there was a significant decrease of heavy metals in plant below- and aboveground parts. In addition, no significant difference between most soil and root heavy metals at 20 and 100 m as well as those at 500 and 750 m distance from the highway. The bioaccumulation factor (BF) of all heavy metals, except Cd and Sr, were less than unity at most distances. However, Cd showed relative BF decline with the distance in contrast to Sr, which increases as distance from the highway increases. On the other hand, the translocation factors (TF) of Cd, Co, Cu, Pb and Zn were higher at the distances far from the highway, while that of Fe, Cr and Sr were higher near the highway. Furthermore, the enrichment factor (EF) showed small variations, among the investigated heavy metals, with varying distances from the pollution source. It was found that soil Fe, Al, Cr, Ni, Sr, V and Zn had significant positive correlation with all investigated heavy metals in P. major roots. The higher TFs of Cd, Fe and Pb in P. major shoots makes it suitable for phytoextraction from soil, while the lower ratios of Al, Mn, V, Co, Ni, Cr, Zn, Cu and Sr make it suitable for their phytostabilization. Therefore, this plant can be used as a bioindicator and biomonitor for traffic related heavy metals.  相似文献   

5.
In this study we determined the concentration of 9 trace elements (As, Cd, Cu, Hg, Mn, Mo, Pb, Se and Zn) in whole blood of children (n = 100, 64 girls, 36 boys and median age: 36 months) using inductively coupled plasma mass spectrometry (ICP-MS). The proportion of children potentially deficient in essential elements or poisoned by toxic elements was evaluated. The aging effects on the concentration of these elements were also investigated. The median values were 3.17 μg/L (As), 0.15 μg/L (Cd), 1.1 mg/L (Cu), 2.1 μg/L (Hg), 10.4 μg/L (Mn), 17.7 μg/L (Mo), 8.7 μg/dL (Pb), 10.7 μg/L (Se) and 5.0 mg/L (Zn). The concentration of many elements (As, Cd, Hg, Mn, Pb and Zn) showed significant age variations but not sex influence. Regarding levels of the essential elements (Cu, Mn, Mo, Se and Zn), B-Cu, B-Mn, B-Se and B-Zn were in the normal range, whereas exceeded levels were observed for B-Mo. None of these children was deficient in essential elements. Except B-Cd, all toxic elements showed exceeded blood levels. The proportion of children potentially poisoned by toxic elements varies from 10% (n = 10) to 95% (n = 95) and depends on toxic element: 95% for As, 10% for Hg and 35% for Pb. The main health concerns emerging from this study are the high As, Hg and Pb exposures of the Kinshasan children requiring further documentation, corrective actions and the implementation of appropriate regulations.  相似文献   

6.
The concentration and chemical fractionation of globally alarming six heavy metals (Cr, Ni, Cu, As, Cd and Pb) were measured in surface water and sediment of an urban river in Bangladesh. The decreasing trend of metals were observed in water as Cr > Cu > As > Ni > Pb > Cd and in sediment as Cr > Ni > Cu > Pb > As > Cd. The level of studied metals exceeded the safe limits of drinking water, indicated that water from this river is not safe for drinking and/or cooking purposes. However, the investigated metals showed low mobility except for Cd and Pb which could pose a severe threat to the aquatic environment. Contamination factor (CF) and geoaccumulation index (Igeo) demonstrated that most of the sediment samples were moderately to heavily contaminated by Cr, As, Cd and Pb. The pollution load index (PLI) values were above one (>1) indicates progressive deterioration of the sediment quality. The extent of pollution by heavy metals in the river Korotoa implies that the condition is much frightening to the biota and inhabitants in the vicinity of the river as well.  相似文献   

7.
The bioaccumulation and rhizofiltration potential of P. stratiotes for heavy metals were investigated to mitigate water pollution in the Egyptian wetlands. Plant and water samples were collected monthly through nine quadrats equally distributed along three sites at Al-Sero drain in Giza Province. The annual mean of the shoot biomass was 10 times that of the root. The concentrations of shoot heavy metals fell in the order: Fe < Mn < Cr < Pb < Cu < Zn < Ni < Co < Cd, while that of the roots were: Fe < Mn < Cr < Pb < Zn < Ni < Co < Cu < Cd. The bio-concentration factor (BCF) of most investigated heavy metals, except Cr and Pb, was greater than 1000, while the translocation factor (TF) of most investigated metals, except Pb and Cu, did not exceed one. The rhizofiltration potential (RP) of heavy metals was higher than 1000 for Fe, and 100 for Cr, Pb and Cu. Significant positive correlations between Fe and Cu in water with those in plant roots and leaves, respectively were recorded, which, in addition to the high BCF and RP, indicate the potential use of P. stratiotes in mitigating these toxic metals.  相似文献   

8.
In this study, a survey for the spatial distribution of heavy metals in Hengshuihu Wetland of China was conducted. Samples were collected from three compartments, water, sediment, and reed (Phragmites communis Trin), at different sites, and their contents of heavy metals, including mercury (Hg), arsenic (As), chromium (Cr), lead (Pb), copper (Cu), zinc (Zn), and cadmium (Cd), were analyzed. The results showed heavy metals in the sediments distributed in the Buffer Zone and Wangkou Sluice area at concentrations relatively higher than those in other areas, while concentrations in the Core Zone were lower. The heavy metal concentrations of water bodies in all areas, except those for Hg and Pb, were lower than the cutoff values for the first-grade water quality that was set as the highest standard to protect the national nature reserves. The heavy metal distributions among the three compartments were significantly different, with the following order: sediment > plant > water. In the reeds, accumulated amounts of different heavy metals varied in the following order: Hg > Zn > As > Cu > Cr. Concentrations of heavy metals only showed weak correlations between the water bodies and the sediments. Concentrations of heavy metals (except Hg and Cr) had no corrections between the sediments and the reeds. The distribution of mercury indicated that it enters the lake mainly from the atmosphere and outside water bodies. The concentrations of As, Hg, Cr, Cu and Zn in different parts of the reeds were detected and their abundances were ranked in the following order: root > leaf > stem.  相似文献   

9.
This paper reports the response of isopods exposed to fallout of a municipal solid waste landfill located in central Italy. Soil samples and specimens of Armadillidium vulgare were collected at different distances from the landfill and analyzed to determine the concentrations of heavy elements such as As, Cd, Co, Cr, Cu, Ni, Pb, Sb, V and Zn. The isopod analysis was performed on unpurged and purged specimens. Analytical data indicate that the soil contents of heavy elements were quite uniform and within the respective local geochemical background. Slight enrichments of Cu and Pb were found in some soils collected within the solid waste. Purged isopods showed an accumulation of As, Co, Cr, Ni, Sb and V whose body levels decreased as the distance from the landfill increased. Cd, Cu, Pb and Zn concentrations in purged specimens were rather uniform and no significant variation trend occurred. This result probably was due to the fact that the isopods are provided with physiological mechanisms of regulation for these heavy elements. Analytical data also indicate the ability of A. vulgare to adsorb differently the heavy elements according to the following order: As > Co > Ni > Pb > V. The contents of heavy elements in unpurged specimens were higher than in purged ones. This finding suggested that the defecation has marked effects on the tissue levels of heavy elements in isopods. This study indicates that the isopods provide useful information about environmental quality in areas characterized by low and discontinuous emission of heavy elements and their low accumulation in soil.  相似文献   

10.
This study was done to evaluate heavy metal concentrations in street dust samples, to compare measured concentrations in samples to background concentrations in order to make evaluations for pollution indices, and to describe the quality of street dust in the studied area in relation to pollution. A total of 30 cumulative samples were collected from the streets of Eslamshahr City. Concentrations of heavy metals were determined using an Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). Results determined mean concentrations (mg/kg) of the heavy metals Cd, Cr, Cu, Ni, Pb, and Zn, in collected samples of street dust as 0.34, 35.1, 239, 42.4, 71.3, and 573, respectively. Igeo values for Cd and Cr, Cu, Ni, Pb, and Zn showed level of moderately polluted, unpolluted, moderately to strongly polluted, unpolluted, moderately polluted and moderately to strongly polluted, respectively. The pattern of total metal concentrations in the studied area was ranked as follows: Zn and Cu>Pb>Cd>Ni>Cr. The highest values for the monomial potential ecological risk (Er) were observed for Cd (114). The mean level of RI for the studied soil samples was 192 (91.3–244), which is classed as presenting a strong potential ecological risk.  相似文献   

11.
Karachi is one of the most populated urban agglomerations in the world. No categorical study has yet discussed the geochemical baseline concentrations of metals in the urban soil of Karachi. The main objectives of this study were to establish geochemical baseline values and to assess the pollution status of different heavy metals. Geochemical baseline concentrations of heavy metals were estimated using the cumulative frequency distribution (CDF) curves. The estimated baseline concentrations of Pb, Cr, Cu, Zn and Fe were 56.23, 12.9, 36.31, 123.03 and 11,776 mg kg−1, respectively. The pollution status of heavy metals in urban soils was evaluated using different quantitative indices (enrichment factor–EF, Geo-accumulation Index–Igeo, and pollution index–PI). Enrichments factors of the selected heavy metals determined by using Fe as a normalizer showed that metal contamination was the product of anthropogenic activities. The urban soils of Karachi were found to have a moderate to moderately severe enrichment with Pb, whereas Cr and Cu has moderate and Zn has minor enrichment. Igeo results indicated moderate soil contamination by Pb at some of the sampling locations. PI for Pb, Cr, Cu and Zn was found in the range of 0.04–3.42, 0.19–1.55, 0.27–2.45 and 0.32–1.57, respectively. Large variations in PI values of Pb revealed that soil in those areas of the city which are influenced by intensive anthropogenic activities have exceptionally high concentrations of Pb. The findings of this study would contribute to the environmental database of the soil of the region and would also facilitate both at the local and the international scales, in a more accurate global environmental monitoring, which will eventually facilitate the development of management and remediation strategies for heavy metal contaminated urban soil.  相似文献   

12.
Sediments of the Dohezar River in Tonekabon contain high levels of heavy metals and therefore, they were chemically analyzed to determine concentrations of these elements. In fact, this research intended to evaluate the ecological risks of the heavy metals As, Pb, Cr, Zn, and Cu in the river sediments. Contamination indices such as enrichment factor and contamination factor, potential ecological risk index for each heavy metal (Ei), and potential ecological risk index (RI) were evaluated. Considering the average concentrations of the heavy metals at all of the Stations, the maximum average for the elements was zinc and the minimum was copper. Therefore, the averages of changes in the concentrations of the elements are Zn > Cr > Pb > As > Cu. Considering calculation of the enrichment factors for the heavy metals according to the EF classification table, the maximum number of Stations (43.02%) with respect to contamination with As were in class 4(moderately severe enrichment). With respect to enrichment of Pb, Zn, Cr, and copper, the rest of the stations with 83.72, 77.91, 86.05, and 69.77%, respectively, were in class 2 (minor enrichment). Considering the high concentrations of the studied elements in the sediments of the region compared to the background value, and based on calculations related to contamination factor, arsenic with the average of 11.9 exceeded the most from the standard limit. It was followed by Pb with 2.2, zinc with 2, Cr with 1.8, and Cu with1.6 (copper exceeding the least from the standard limit). With respect to Ei (the potential ecological risk index for each heavy metal), arsenic was the element with the highest environmental risk. Moreover, with respect to RI (potential ecological risk index), most Stations were in the low-grade range (low environmental risk). This research used statistical studies on correlation coefficients and cluster analysis to find the origin of the heavy metals in the sediments of the region. The low correlation between the heavy metals in the soil can indicate they probably did not have the same source. Moreover, these elements have different geochemical behaviors due to their low correlation. Finally, the kriging method was employed to extract interpolation maps of the spatial distribution for each of the heavy metals.  相似文献   

13.
The concentration of Mn, Fe, Zn, Cu, Cd, Cr, Ni, Ag, Mo, Nd, Al, Ce, As, Sr, Pb, Pt and Hg was analysed in water, sediments, and aquatic organisms from the San Roque Reservoir (Córdoba-Argentina), sampled during the wet and dry season, to evaluate their transfer through the food web. Stable nitrogen (δ15N) isotopes were used to investigate trophic interactions. According to this, samples were divided into three trophic groups: plankton, shrimp (Palaemonetes argentinus) and fish (Silverside, Odontesthes bonariensis). Liver and gills are the main heavy metal storage tissues in fish. Hg and As concentrations in the muscle of O. bonariensis exceed the Oral Reference doses for metals established by USEPA (2009). Trophic magnification factors (TMFs) for each element were determined from the slope of the regression between trace element concentrations and δ15N. Calculated TMFs showed fundamental differences in the trophodynamics of the studied elements during the wet and dry season in the San Roque Reservoir. Concentrations of Ni, Cd, Cr, Al, Mn, Fe, Mo, Ce, Nd, Pt and Pb during both seasons, and Sr during the dry season, showed statistically significant decreases (TMF < 1) with increasing trophic levels. Thus these elements were trophically diluted in the San Roque food chain. Conversely, Cu, Ag and As (dry season) showed no significant relationships with trophic levels. Among the elements studied, Hg in the wet season, and Zn in the dry season were the only ones showing a statistically significant increase (TMF > 1) in concentration with trophic level. Current results trigger the need for further studies to establish differential behaviour with different species within the aquatic web, particularly when evaluating the transfer of toxic elements to edible organisms, which could pose health risks to humans.  相似文献   

14.
迁安市农田重金属含量空间变异性   总被引:13,自引:0,他引:13  
利用地统计学和GIS相结合的方法,对河北省迁安市农田土壤耕层(0~20 cm)8种重金属含量的空间变异性进行了研究.结果表明,农田中8种重金属含量均值未超过土壤环境质量(GB15618-1995)二级标准,属于中等变异.Cu、Zn、Ni、Cr和As含量的变异函数理论模型符合指数模型,空间相关程度强;Hg和Cd含量的变异函数理论模型符合球状模型,空间相关程度中等;Pb含量具有纯块金效应,空间相关程度弱.在整个研究尺度上,Pb含量具有恒定的变异,其余7种重金属含量由空间自相关部分引起的空间变异性起主要作用,空间相关距离为11~20 km.用普通Kriging方法对Cu、Zn、Ni、Cr、Hg、As和Cd含量空间局部插值表明,北部山地重金属含量较高,而中部盆地重金属含量较低.  相似文献   

15.
《Process Biochemistry》2007,42(11):1546-1552
Heavy metals are toxic pollutants released into the environment as a result of industrial, mining and agricultural activities. The biosorption of Pb, Cu, Cd, and Ni from single and binary metal systems were studied in equilibrium systems and in a flow-through column packed with a calcium-saturated anaerobic sludge biosorbent, respectively. The single-metal sorption uptake capacity of the biomass for Pb was slightly inhibited by the presence of Cu and Cd cations (by 6%) and by the presence of nickel (by 11%). The affinity order of anaerobic biomass for the four metals was established as: Pb > Cu > Ni > Cd. Factors such as hydration effects, hydrolysis effects and covalent binding of the metal ions may contribute to this result. By studying the breakthrough curves obtained from a fixed bed column fed with an equimolar mixture of Pb, Cd, Cu, and Ni, it was determined that lead was the last metal to break through the column at the 150 bed volume mark compared to 4, 15, 30 bed volume marks for Ni, Cd, and Cu, respectively.  相似文献   

16.
In order to better understand the processes that regulate the accumulation in the apoplasm of heavy metals and their mobilization by the plant metabolites it is essential to study the mechanisms that regulate the interactions between metal ions and pectins. In such a context, the sorption of Cd(II), Zn(II), Cu(II) and Pb(II) from single and multi-metal solutions, by a Ca-polygalacturonate gel with a degree of esterification of 18.0 (PGAM1) and 65.5% (PGAM2) was studied in the 3.0–6.0 pH range in the presence of CaCl2 2.5 mM. The sorption of Cr(III) from single metal solution was also considered. The results show that the amount of each metal ion sorbed increases with increasing the initial metal ion concentration and pH. The data from the single metal solution tests show that at pH 6.0 the affinity of the metal ions towards the PGAM1 matrix follows the order: Cr(III) > Cu(II) ? Pb(II) ? Zn(II) ? Cd(II). The simultaneous sorption of the bivalent metal ions by the PGAM1 gels indicates that Pb(II) is selectively sorbed. The FT-IR spectra show that the carboxylate groups are mainly responsible for the metal ion coordination. The ability of PGAM2 to accumulate Cr(III), Cu(II), and Pb(II) was lower than that found in the PGAM1 systems whereas the sorption of Zn(II) and Cd(II) was negligible.  相似文献   

17.
为了明确调水调沙工程长期影响下黄河口近岸沉积物中重金属含量的分布特征及其生态风险,基于2012年黄河口近岸27个站位的表层沉积物样品,通过ICP-MS测定重金属(Zn、Cr、Ni、Pb、Cu、Cd)和砷(As)含量,并运用潜在生态风险指数法(RI)对其进行生态风险评估。结果表明:近岸沉积物中重金属和As的平均含量表现为AsZnCrNiPbCuCd。Cr、Ni、Cu和Pb四种元素的分布规律较为一致,整体呈现出近岸和近黄河口高而远离河口和岸线低的空间分异特征。Ni、Cu、Pb、Zn与粘土均呈极显著或显著正相关(P0.01或P0.05),而Cd、Cr和As与其相关性均未达到显著水平(P0.05)。近岸沉积物中6种重金属和As的平均单项潜在生态风险指数大小顺序整体表现为CdAsNiPbCuCrZn。就潜在生态风险(RI)而言,研究区域18.52%的站位属轻微生态危害,70.07%的站位属中等生态危害,7.41%的站位属强生态危害,Cd和As是造成危害的两种主要元素。近岸沉积物中重金属和As的来源复杂且多样,主要是由于农业化肥使用、海上石油开采和泄漏、化石燃料燃烧以及河口污染物输入所致。对比研究发现,随着调水调沙工程的长期实施,除Cd和As外沉积物中其他重金属含量均呈下降趋势,说明二者的生态风险将会随调水调沙的长期实施呈增加趋势,而其他重金属的生态风险将呈降低趋势,故未来应重点关注近岸沉积物中Cd和As的生态毒理风险。  相似文献   

18.
The issue of heavy metal pollution is of high concern due to its potential health risks and detrimental effects on human beings, animals, and plants. In this study, farmland soil samples from 79 sampling sites were collected in Karashahar–Baghrash oasis, northwest China, and the contents of eight heavy metal elements (As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn) were determined by standard methods. The spatial distribution, pollution, and ecological risks of heavy metals were analyzed based on Geographical Information System (GIS) technology, contamination factor (CF), pollution load index (PLI), and potential ecological risk index (RI). Results indicated that: (1) The average contents of Cd, Cr, Ni, Pb, and Zn exceeded the background values of irrigation soils of Xinjiang by 54.0, 1.34, 1.39, 3.44, and 5.01 times, respectively. The average contents of Cd exceeded the national standard of China by 10.80 times; (2) The pollution order of CF was ranked as Cd > Zn > Pb > Ni > Cr > Cu > As > Mn, and the ecological risk order of Eri was ranked as Cd > Ni > As > Cu > Ni > Pb > Cr > Zn. The average PLI of the study area showed heavy pollution level, and the average RI of the study area fell into considerable risk; (3) The moderately polluted areas with moderate potential ecological risks distributed in the northern parts, whereas heavily polluted areas with considerable potential ecological risks distributed in the southern parts of the study area; (4) Cr, Cu, and Mn of farmland soils were mainly originated from natural factors. Cd, Ni, and Pb were mainly originated from anthropogenic factors. As and Zn may be associated with both natural and anthropogenic factors. Cd contributed most to the PLI and RI of the farmland soils in the study area.  相似文献   

19.
赣江上游沉积物重金属空间分布及污染特征   总被引:1,自引:0,他引:1  
为了解赣江上游表层沉积物重金属污染特征,采集赣江上游38个样品,采用电感耦合等离子体质谱仪(ICP-MS,Agilent 8800)分析沉积物中重金属含量,结合内梅罗综合污染指数法、地累积指数法、主成分分析及沉积物质量基准等研究赣江上游沉积物中重金属污染程度,分析污染物可能的来源及评价其存在的生态风险。结果表明:赣江上游沉积物中W、Cr、Mn、Cu、Zn、As、Cd、Hg、Pb等9种重金属的平均含量分别为12.30、4.40、999.84、9.72、293.81、47.66、2.85、1.34、63.68 mg·kg-1;除Cr和Cu外,其余7种重金属的平均值均超过江西省土壤背景值。内梅罗综合污染评价表明,赣江上游表层沉积物中47.37%的采样点呈严重污染,28.95%采样点污染明显,其中污染程度章水段>桃江段>贡江段;地积累指数法显示,Mn、As、W、Pb呈轻度污染,Cd和Hg呈中度或偏重度污染;主成分分析显示,As、W、Hg、Pb具有相似的污染源,Cr和Mn具有相似的污染源;沉积物质量基准分析表明,对底栖生物可能产生毒性效应的重金属主要是Cd和Hg,主要分布在章水段和桃江段。  相似文献   

20.
Concentrations of Pb, Zn, Cd, Ni, Cu, Cr, and Mn were determined to assess the impact of automobiles on heavy metal contamination of roadside soil. Soil samples at four polluted sites and a control site were collected at a depth of 0, 2, 5, 10, 15, 20, 30?cm. A comparison of elemental levels between polluted and control sites exhibited exceptionally higher concentrations at the former sites. The Pb levels in polluted sites varied from 70 to 280.5?µgg?1and it rapidly decreased with depth. Similarly, mean concentrations of Zn, Cd, Ni, Cu, Cr, and Mn were significantly higher at polluted sites and followed a decreasing trend with the increase in depth. Correlation coefficients between heavy metals and traffic density were positively significant except for nickel. Profile samples showed that Pb, Zn, Cd, Cu, and Mn were largely concentrated in the top 5?cm confirming airborne contamination. The vertical movement and partitioning of metals, except Ni and Cr, exhibited predominant association with soil pH and organic carbon. The results have been presented using Heavy Metal Index.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号