首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The Fe2+–Mg distribution coefficients between sapphirine and spinel:
were experimentally determined at pressures of 9–13 kbar and temperatures of 950–1150 °C using a natural ultrahigh-temperature (UHT) granulite with paragenesis of these minerals from the Napier Complex in East Antarctica [XMg = Mg / (Fe + Mg); XFe = Fe / (Fe + Mg)]. A new sapphirine–spinel geothermometer has been obtained as:

We applied the exchange thermometer to UHT or high-grade metamorphic rocks that were reported from various complexes in the world. If the KD values of 2.63–4.34 obtained from low-Cr mineral pairs such as XCrSpr < 0.016 and XCrSpl < 0.047 were substituted into the equation, their temperature conditions would be estimated as 806–1050 °C at 11 kbar. The XCr means Cr / (Al + Cr(+ Fe3+)). These temperatures are reasonable retrograde or near peak metamorphic condition.  相似文献   


2.
Strontium chemical diffusion has been measured in albite and sanidine under dry, 1 atm, and QFM buffered conditions. Strontium oxide-aluminosilicate powdered sources were used to introduce the diffusant and Rutherford Backscattering Spectroscopy (RBS) used to measure diffusion profiles. For the 1 atm experiments, the following Arrhenius relations were obtained:
Sanidine (Or61), temperature range 725–1075°C, diffusion normal to (001): D=8.4 exp(−450±13 kJ mol−1/RT) m2s−1. Albite (Or1), temperature range 675–1025°C, diffusion normal to (001): D=2.9 × exp(−224±11 kJ mol−1/RT) m2s−1.
The alkali feldspars in this and earlier work display a broad range of activation energies for Sr diffusion, which may be a consequence of the thermodynamic non-ideality of the alkali feldspar system and/or the mixed alkali effect.  相似文献   

3.
Within the framework of Pitzer's specific interaction model, interaction parameters for aqueous silica in concentrated electrolyte solutions have been derived from Marshall and co-authors amorphous silica solubility measurements. The values, at 25°C, of the Pitzer interaction parameter (λSiO2(aq)−i) determined in this study are the following: 0.092 (i = Na+), 0.032 (K+), 0.165 (Li+), 0.292 (Ca2+, Mg2+), −0.139 (SO42−), and −0.009 (NO3). A set of polynomial equations has been derived which can be used to calculate λSiO2(aq)−i for these ions at any temperature up to 250°C. A linear relationship between the aqueous silica-ion interaction parameters (λSiO2(aq)−i) and the surface electrostatic field (Zi/re,i) of ions was obtained. This empirical equation can be used to estimate, in first approximation, λSiO2(aq)−i if no measurements are available. From this parameterisation, the calculated activity coefficient of aqueous silica is 2.52 at 25°C and 1.45 at 250°C in 5 m NaCl solution. At lower concentrations, e.g. 2 m NaCl, the activity coefficient of silica is 1.45 at 25°C and 1.2 at 250°C. Hence, in practice, it is necessary to take into account the activity coefficient of aqueous silica (λSiO2(aq)≠1) in hydrothermal solutions and basinal brines where the ionic strength exceeds 1. A comparison of measured [Marshall, W.L., Chen, C.-T.A., 1982. Amorphous silica solubilities, V. Prediction of solubility behaviour in aqueous mixed electrolyte solutions to 300°C. Geochim. Cosmochim. Acta 46, 289–291.] and computed amorphous silica solubility, using this parameterisation, shows a good agreement. Because the effect of individual ions on silicate and silica polymorph solubilities are additive, the present study has permitted to derive Pitzer interaction parameters that allow a precise computation of γSiO2(aq) in the Na---K---Ca---Mg---Cl---SO4---HCO3---SiO2---H2O system, over a large range of salt concentrations and up to temperatures of 250°C.  相似文献   

4.
As a result of the collapse of a mine tailing dam, a large extension of the Guadiamar valley was covered with a layer of pyritic sludge. Despite the removal of most of the sludge, a small amount remained in the soil, constituting a potential risk of water contamination. The kinetics of the sludge oxidation was studied by means of laboratory flow-through experiments at different pH and oxygen pressures. The sludge is composed mainly of pyrite (76%), together with quartz, gypsum, clays, and sulphides of zinc, copper, and lead. Trace elements, such as arsenic and cadmium, also constitute a potential source of pollution. The sludge is fine grained (median of 12 μm) and exhibits a large surface (BET area of 1.4±0.2 m2 g−1).

The dissolution rate law of sludge obtained is r=10−6.1(±0.3) [O2(aq)]0.41(±0.04) aH+0.09(±0.06) gsludge m−2 s−1 (22 °C, pH=2.5–4.7). The dissolution rate law of pyrite obtained is r=10−7.8(±0.3) [O2(aq)]0.50(±0.04) aH+0.10(±0.08) mol m−2 s−1 (22 °C, pH=2.5–4.7). Under the same experimental conditions, sphalerite dissolved faster than pyrite but chalcopyrite dissolves at a rate similar to that of pyrite. No clear dependence on pH or oxygen pressure was observed. Only galena dissolution seemed to be promoted by proton activity. Arsenic and antimony were released consistently with sulphate, except at low pH conditions under which they were released faster, suggesting that additional sources other than pyrite such as arsenopyrite could be present in the sludge. Cobalt dissolved congruently with pyrite, but Tl and Cd seemed to be related to galena and sphalerite, respectively.

A mechanism for pyrite dissolution where the rate-limiting step is the surface oxidation of sulphide to sulphate after the adsorption of O2 onto pyrite surface is proposed.  相似文献   


5.
A. Shafiee   《Engineering Geology》2008,97(3-4):199-208
Achieving a sufficiently low permeability for the aggregate-clay mixtures, whether used as the core of embankment dam or soil liner, is essential. The study illustrates the role of granule (bead or aggregate) content and size, confining stress and fabric anisotropy on the permeability of ceramic bead–lean clay and aggregate-fat clay mixtures. It is shown that depending on the plasticity of the clay, the permeability may decrease or increase with bead/aggregate content. The permeability also decreases when either granule size or confining stress increases. It is found that the permeability is affected by fabric anisotropy in such a manner that its value in the horizontal direction (kh) is more than that in the vertical direction (kv), however, kh/kv decreases towards 1 for bead contents equal to or below 40%. In high bead content mixtures (i.e., 60% beads) kh/kv reaches as high as 3 with an increase in the confining stress. The concept of the development of heterogeneous field of density in the clay is also used to demonstrate the impact of granule size and fabric anisotropy on the permeability.  相似文献   

6.
大气 CO2浓度在控制全球气候变化方面具有至关重要的作用,研究碳循环、CO2收支平衡和精确评估是制定区域CO2减排策略和寻找新的碳汇途径最重要的组成部分。碳酸盐风化碳汇是全球碳循环研究的一个重要方向。为此,本研究以天津平原区浅层地下水为研究对象,通过对地下水调查及水样的采集与分析,运用水化学分析方法分析了地下水水化学特征,并估算了地下水总储存量、DIC储量和碳酸盐风化碳汇量。研究结果表明:浅层地下水化学场自北部山前平原向南部冲积平原和滨海平原,呈现出自北而南和由北西向南东的水平水化学分带规律,地下水由低浓度的淡水、微咸水变为高浓度咸水,沿此方向水化学类型由HCO3-Ca·Na·Mg→Cl·SO4-Na→Cl·HCO3-Na→Cl-Na型转变;淡水区、微咸水区和咸水区面积分别为733、3 034和6 564 km2。地下水水化学组分中Ca2+、Mg2+ HCO 3 -主要来源于碳酸盐的溶解作用。研究区浅层地下水总储存量为2 241 640万m3,总DIC储量为8.13×106 t,总碳汇量为4.11×106 t。研究区浅层地下水淡水区、微咸水区和咸水区地下水储存量分别为157 799万、6 245 936万和1 459 247万 m3,DIC浓度分别为19200、19200和19342 mg/L,DIC储量分别为0.67×106、1.65×106和0.58×106 t,碳汇量分别为0.22×106、0.90×106和2.98×106 t。沿地下水流向,DIC、储量和碳汇量的空间分布均呈现出由低到高的趋势。  相似文献   

7.
Marcasite precipitation from hydrothermal solutions   总被引:3,自引:0,他引:3  
Pyrite and marcasite were precipitated by both slow addition of aqueous Fe2+ and SiO32− to an H2S solution and by mixing aqueous Fe2+ and Na2S4 solutions at 75°C. H2S2 or HS2 and H2S4 or HS4 were formed in the S2O32− and Na2S4 experiments, respectively. Marcasite formed at pH < pK1 of the polysulfide species present (for H2S2, pK1 = 5.0; for H2S4, pK1 = 3.8 at 25°C). Marcasite forms when the neutral sulfane is the dominant polysulfide, whereas pyrite forms when mono-or divalent polysulfides are dominant. In natural solutions where H2S2 and HS2 are likely to be the dominant polysulfides, marcasite will form only below pH 5 at all temperatures.

The pH-dependent precipitation of pyrite and marcasite may be caused by electrostatic interactions between polysulfide species and pyrite or marcasite growth surfaces: the protonated ends of H2S2 and HS2 are repelled from pyrite growth sites but not from marcasite growth sites. The negative ions HS2 and S22− are strongly attracted to the positive pyrite growth sites. Masking of 1πg* electrons in the S2 group by the protons makes HS2 and H2S2 isoelectronic with AsS2− and As22−, respectively ( et al., 1981). Thus, the loellingitederivative structure (marcasite) results when both ends of the polysulfide are protonated.

Marcasite occurs abundantly only for conditions below pH 5 and where H2S2 was formed near the site of deposition by either partial oxidation of aqueous H2S by O2 or by the reaction of higher oxidation state sulfur species that are reactive with H2S at the conditions of formation e.g., S2O32− but not SO42−. The temperature of formation of natural marcasite may be as high as 240°C ( and , 1985), but preservation on a multimillion-year scale seems to require post-depositional temperatures of below about 160°C ( , 1973; and , 1985).  相似文献   


8.
Garnet–melt trace element partitioning experiments were performed in the system FeO–CaO–MgO–Al2O3–SiO2 (FCMAS) at 3 GPa and 1540°C, aimed specifically at studying the effect of garnet Fe2+ content on partition coefficients (DGrt/Melt). DGrt/Melt, measured by SIMS, for trivalent elements entering the garnet X-site show a small but significant dependence on garnet almandine content. This dependence is rationalised using the lattice strain model of Blundy and Wood [Blundy, J.D., Wood, B.J., 1994. Prediction of crystal–melt partition coefficients from elastic moduli. Nature 372, 452–454], which describes partitioning of an element i with radius ri and valency Z in terms of three parameters: the effective radius of the site r0(Z), the strain-free partition coefficient D0(Z) for a cation with radius r0(Z), and the apparent compressibility of the garnet X-site given by its Young's modulus EX(Z). Combination of these results with data in Fe-free systems [Van Westrenen, W., Blundy, J.D., Wood, B.J., 1999. Crystal-chemical controls on trace element partitioning between garnet and anhydrous silicate melt. Am. Mineral. 84, 838–847] and crystal structure data for spessartine, andradite, and uvarovite, leads to the following equations for r0(3+) and EX(3+) as a function of garnet composition (X) and pressure (P):
r0(3+) [Å]=0.930XPy+0.993XGr+0.916XAlm+0.946XSpes+1.05(XAnd+XUv)−0.005(P [GPa]−3.0)(±0.005 Å)
EX(3+) [GPa]=3.5×1012(1.38+r0(3+) [Å])−26.7(±30 GPa)
Accuracy of these equations is shown by application to the existing garnet–melt partitioning database, covering a wide range of P and T conditions (1.8 GPa<P<5.0 GPa; 975°C<T<1640°C). DGrt/Melt for all 3+ elements entering the X-site (REE, Sc and Y) are predicted to within 10–40% at given P, T, and X, when DGrt/Melt for just one of these elements is known. In the absence of such knowledge, relative element fractionation (e.g. DSmGrt/Melt/DNdGrt/Melt) can be predicted. As an example, we predict that during partial melting of garnet peridotite, group A eclogite, and garnet pyroxenite, r0(3+) for garnets ranges from 0.939±0.005 to 0.953±0.009 Å. These values are consistently smaller than the ionic radius of the heaviest REE, Lu. The above equations quantify the crystal-chemical controls on garnet–melt partitioning for the REE, Y and Sc. As such, they represent a major advance en route to predicting DGrt/Melt for these elements as a function of P, T and X.  相似文献   

9.
We present results of computations on the interaction of solid-phase electrum–argentite–pyrite (weight ratios 210−5/ 210−3/1 and 210−5/410−2/1) association with Cl-containing aqueous moderately acid solutions (0.5m NaCl, pH = 3.08) at 300 °C and 500 bars. These data are a physicochemical basis for predicting the geochemical behavior of Au and Ag during the hydrothermal-metasomatic transformation of Au-Ag-pyrite. We also propose a technique of study of this process based on the phase equilibria of the subsystem Au–Ag–S with the aqueous solution at different liquid/solid (l/s) ratios, with the use of new graphic diagrams. The relationship of the composition of the solid-phase association with l/s ratio in real boundary conditions (Au = 17 ppm, mAu/mAg = 10–3.57–10–2.28) is shown. The maximum l/s values for complete leaching of gold and silver (l/smax = 200–800) are estimated. It has been established that argentite is the first to dissolve when mAu/mAg(s) > mAu/mAg(sol), and electrum, when mAu/mAg(s) < mAu/mAg(sol).

The experimental results showed that at 300 °C, the conversion of electrum (NAu = 300‰) nonequilibrated with pyrite into an Au-richer form (NAu = 730‰) and argentite follows an intricate kinetic scheme. Using the Pilling-Bedwords kinetic equation for processing data yielded the process rate constant K = 2.8(±0.5)10−5 g2cm−4day−1. With this equation, the time of the complete conversion of 200 μm thick flat gold grains is 604 days. These data evidence a significant role of kinetic factors in hydrothermal-metasomatic processes involving native gold, which requires combination of thermodynamic and kinetic approaches on the construction of geologo-genetic models for hydrothermal sulfide formation.  相似文献   


10.
Erling Krogh Ravna 《Lithos》2000,53(3-4):265-277
Multiple regression analysis of a compilation of the Fe2+–Mg distribution between garnet and hornblende from experimental runs on basaltic to intermediate compositions (n=22) and coexisting garnet–clinopyroxene–hornblende from natural (intermediate to basaltic) rocks (n=43) has been performed to define ln KD(Fe2+/Mg)Grt–Hbl as a function of temperature and garnet composition. The regression of data covering a large span in pressure (5–16 kbar), temperature (515–1025°C) and composition yields the ln KD(Fe2+/Mg)Grt–HblPT compositional relationship (r2=0.93):
where

Application of this expression to natural garnet–hornblende pairs in intermediate to basaltic and semipelitic rock types from various settings gives temperatures that are consistent with other methods.  相似文献   


11.
The Korosten complex is a Paleoproterozoic gabbro–anorthosite–rapakivi granite intrusion which was emplaced over a protracted time interval — 1800–1737 Ma. The complex occupies an area of about 12 000 km2 in the north-western region of the Ukrainian shield. About 18% of this area is occupied by various mafic rocks (gabbro, leucogabbro, anorthosite) that comprise five rock suites: early anorthositic A1 (1800–1780 Ma), main anorthositic A2 (1760 Ma), early gabbroic G3 (between 1760 and 1758 Ma), late gabbroic G4 (1758 Ma), and a suite of dykes D5 (before 1737 Ma). In order to examine the relationships between the various intrusions and to assess possible magmatic sources, Nd and Sr isotopic composition in mafic whole-rock samples were measured. New Sr and Nd isotope measurements combined with literature data for the mafic rocks of the Korosten complex are consistent and enable construction of Rb–Sr and Sm–Nd isochronous regressions that yield the following ages: 1870 ± 310 Ma (Rb–Sr) and 1721 ± 90 Ma (Sm–Nd). These ages are in agreement with those obtained by the U–Pb method on zircons and indicate that both Rb–Sr and Sm–Nd systems have remained closed since the time of crystallisation. In detail, however, measurable differences in isotopic composition of the Korosten mafic rock depending on their suite affiliation were revealed. The oldest, A1 rocks have lower Sr (87Sr/86Sr(1760) = 0.70233–0.70288) and higher Nd (εNd(1760) = 1.6–0.9) isotopic composition. The most widespread A2 anorthosite and leucogabbro display higher Sr and lower Nd isotopic composition: 87Sr/86Sr(1760) = 0.70362, εNd(1760) varies from 0.2 to − 0.7. The G3 gabbro–norite has slightly lower εNd(1760) varying from − 0.7 to − 0.9. Finally, G4 gabbroic rocks show relatively high initial 87Sr/86Sr (0.70334–0.70336) and the lowest Nd isotopic composition (εNd(1760) varies from − 0.8 to − 1.4) of any of the mafic rocks of the Korosten complex studied to date. On the basis of Sr and Nd isotopic composition we conclude that Korosten initial melts may have inherited their Nd and Sr isotopic characteristics from the lower crust created during the 2.05–1.95 Ga Osnitsk orogeny and 2.0 Ga continental flood basalt event. Indeed, εNd(1760) values in Osnitsk rocks vary from 0.0 to − 1.9 and from 0.2 to 3.4 in flood basalts. We suggest that these rocks being drawn into the upper mantle might melt and give rise to the Korosten initial melts. 87Sr/86Sr(1760) values also support this interpretation. We suggest that the Sr and Nd isotopic data currently available on mafic rocks of the Korosten complex are consistent with an origin of its primary melts by partial melting of lower crustal material due to downthrusting of the lower crust into upper mantle forced by Paleoproterozoic amalgamation of Sarmatia and Fennoscandia.  相似文献   

12.
We determine seismic strain rate of tectonic earthquakes along the Central America Volcanic Arc. We then compare this result to those obtained from earthquakes related to the convergence of the Cocos and Caribbean plates and to earthquakes in the back-arc region of northern Central America.

The seismic strain-rate tensor for shallow-focus earthquakes along the Central America volcanic arc since 1700, has a compressive eigenvector with a magnitude of 0.7 × 10−8 year−1, and oriented in a 357° azimuth. The extensive eigenvector is oriented in a 86° azimuth, with a magnitude of 0.82 × 10−8 year−1. When only Centroid Moment-tensor solutions (CMT) are considered, the respective eigenvectors are 1.2 × 10−8 year−1 and 1.0 × 10−8 year−1.

The compressive eigenvector from the seismic strain-rate tensor for earthquakes along the Cocos-Caribbean convergent margin is 2.0 × 10−8 year−1, plunging at 25°, and oriented in a 29° azimuth. Its magnitude and direction are similar to those of the compressive eigenvector for earthquakes along the volcanic arc. The extensive eigenvector along the convergent margin, on the other hand, has a large vertical component. The compressive and extensive eigevenvectors are 4.9 × 10−8 year−1 and 4.6 × 10−8 year−1, using only CMTs as the database.

Earthquakes along the grabens of northern Central America yield a seismic strain-rate tensor whose extensive eigenvector has a magnitude of 2.4 × 10−8 year−1, oriented in a 109° azimuth. Magnitude and direction are similar to those of the extensive eigenvector for earthquakes along the volcanic arc. The compressive eigenvector along the grabens is practically vertical.

Similarities in magnitudes and directions for compressive and extensive eigenvectors suggest to us that the strain field along the Central America volcanic arc is the result of compression along the convergent Cocos-Caribbean margin, and extension in the back-arc region, along the grabens of northern Central America. This field is resolved as strike-slip faulting along the arc.  相似文献   


13.
A decrease in temperature (ΔT up to 45.5 °C) and chloride concentration (ΔCl up to 4.65 mol/l) characterises the brine–seawater boundary in the Atlantis-II, Discovery, and Kebrit Deeps of the Red Sea, where redox conditions change from anoxic to oxic over a boundary layer several meters thick. High-resolution (100 cm) profiles of the methane concentration, stable carbon isotope ratio of methane, and redox-sensitive tracers (O2, Mn4+/Mn2+, Fe3+/Fe2+, and SO42−) were measured across the brine–seawater boundary layer to investigate methane fluxes and secondary methane oxidation processes.

Substantial amounts of thermogenic hydrocarbons are found in the deep brines (mostly methane, with a maximum concentration up to 4.8×105 nmol/l), and steep methane concentration gradients mainly controlled by diffusive flow characterize the brine–seawater boundary (maximum of 2×105 nmol/l/m in Kebrit Deep). However, locally the actual methane concentration profiles deviate from theoretical diffusion-controlled concentration profiles and extremely positive δ13C–CH4 values can be found (up to +49‰ PDB in the Discovery Deep). Both, the actual CH4 concentration profiles and the carbon-13 enrichment in the residual CH4 of the Atlantis-II and Discovery Deeps indicate consumption (oxidation) of 12C-rich CH4 under suboxic conditions (probably utilizing readily available—up to 2000 μmol/l—Mn(IV)-oxihydroxides as electron acceptor). Thus, a combined diffusion–oxidation model was used to calculate methane fluxes of 0.3–393 kg/year across the brine–seawater boundary layer. Assuming steady-state conditions, this slow loss of methane from the brines into the Red Sea bottom water reflects a low thermogenic hydrocarbon input into the deep brines.  相似文献   


14.
S.A. Ola 《Engineering Geology》1991,30(3-4):325-336
A brief review of the geology of the tar sand areas of Nigeria is given. Analysis shows that the tar sand used for the tests consists of a well graded silty sand (cmf) with about 5% clay; and 3–5% bitumen. Results presented show a very high in situ compressive strength of about 450 kN/m2, a high ratio of tensile to compressive strength of about 22%, peak shear strength parameters of Cp′=15kN/m2and φp′ = 19° and residual parameters of Cr =0, φr = 18°. The compacted tar sand behaved like an overconsolidated soil with a preconsolidating pressure, Pc of 140 kN/m2. In general, the results of the in situ strength tests indicate that the Nigerian tar sand behaved as a soft sandstone.  相似文献   

15.
The thermal expansivities of eight sodium aluminosilicate liquids were derived from the slope of new volume data at low temperatures (713−1072 K) combined with the high temperature (1300−1835 K) volume measurements of Stein et al. (1986) on the same liquids. Melt compositions range from 47−71 wt% SiO2, 0−31 wt% A1203, and 17−33 wt% Na2O; the volume of albite supercooled liquid at 1092 K was also determined. The low temperature volumes were derived from measurements of the glass density of each sample at 298 K, followed by measurements of the glass thermal expansion coefficient from 298 K to the respective glass transition interval. This technique takes advantage of the fact that the volume of a glass is equal to the volume of the corresponding liquid at the limiting fictive temperature (Tf), and that Tf can be approximated as the onset of the rapid rise in thermal expansion at the glass transition in a heating curve (Moynihan, 1995). No assumptions were made regarding the equivalence of enthalpy and volume relaxation through the glass transition. The propagated error on the volume of each supercooled liquid at Tf is 0.25%. Combination of these low temperature data with the high temperature measurements of Stein et al. (1986) allowed a constant thermal expansivity of each liquid to be derived over a wide temperature interval (763−1001 degrees) with a fitted 1σ error of 0.6–4.6%; in every case, no temperature dependence to dV/dTliq could be resolved. Calibration of a linear model equation leads to fitted values ± 1σ (units of cm3/mole) for (26.91 ± .04), (37.49 ± .12), (26.48 ± .06) at 1373 K, and (7.64 ± .08 × 10-3 cm3/mole-K). The results indicate that neither Si02 nor Al2O3 contribute to the thermal expansivity of the liquids, and that dV/dTliq is independent of temperature between 713–1835 K over a wide range of liquid composition. Calculated volumes based on this model recover both low and high temperature measurements with a standard deviation <0.25%, whereas values of dV/dTliq can be predicted within 5.6%.  相似文献   

16.
The dominant feature of the olivine Raman spectrum is a doublet that occurs in the spectral region of 815–825 cm−1 (DB1) and 838–857 cm−1 (DB2). These features arise from coupled symmetric and asymmetric stretching vibrational modes of the constituent SiO4 tetrahedra. The frequencies of both peaks show monotonic shifts following cation substitution between forsterite and fayalite. We present a calibration for extracting olivine Fo contents (Fo = Mg/(Mg + Fe) molar ratio; Fo0–100) from the peak positions of this doublet, permitting estimates of chemical composition from Raman spectra (acquired in the laboratory or field) as well as providing information on crystal structure (distinction of polymorphs). Eight samples spanning the compositional range from forsterite to fayalite were used to develop the calibration equations for the DB1 and DB2 peaks individually and together. The data indicate that the DB1 peak is more reliable for calculating the compositions of Fe-rich olivine but that the DB2 peak is better for magnesian compositions. The two-peak calibration overcomes the limitations of the single-peak calibrations and is capable of calculating olivine compositions to within ±10 Fo units.  相似文献   

17.
SHRIMP zircon U–Pb ages and geochemical and Sr–Nd–Pb isotopic data are presented for the gabbroic intrusive from the southern Taihang Mountains to characterize the nature of the Mesozoic lithospheric mantle beneath the central North China Craton (NCC). The gabbroic rocks emplaced at 125 Ma and are composed of plagioclase (40–50%), amphibole (20–30%), clinopyroxene (10–15%), olivine (5–10%) and biotite (5–7%). Olivines have high MgO (Fo = 78–85) and NiO content. Clinopyroxenes are high in MgO and CaO with the dominant ones having the formula of En42–46Wo41–50Fs8–13. Plagioclases are dominantly andesine–labradorite (An = 46–78%) and have normal zonation from bytownite in the core to andesine in the rim. Amphiboles are mainly magnesio and actinolitic hornblende, distinct from those in the Precambrian high-pressure granulites of the NCC. These gabbroic rocks are characterized by high MgO (9.0–11.04%) and SiO2 (52.66–55.52%), and low Al2O3, FeOt and TiO2, and could be classified as high-mg basaltic andesites. They are enriched in LILEs and LREEs, depleted in HFSEs and HREEs, and exhibit (87Sr/86Sr)i = 0.70492–0.70539, εNd(t) = − 12.47–15.07, (206Pb/204Pb)i = 16.63–17.10, Δ8/4 = 70.1–107.2 and Δ7/4 = − 2.1 to − 9.4, i.e., an EMI-like isotopic signatures. Such geochemical features indicate that these early Cretaceous gabbroic rocks were originated from a refractory pyroxenitic veined-plus-peridotite source previously modified by an SiO2-rich melt that may have been derived from Paleoproterozoic subducted crustal materials. Late Mesozoic lithospheric extension might have induced the melting of the metasomatised lithospheric mantle in response to the upwelling of the asthenosphere to generate these gabbroic rocks in the southern Taihang Mountains.  相似文献   

18.
The influence of pH on the rate of dissolution of various carbonates (calcite, aragonite, witherite, magnesite and dolomite) has been investigated at 25°C using a continuous fluidized bed reactor. The general rate dependence on pH observed for the simple carbonates is very similar and is in agreement with the results observed for calcite and aragonite by L.N. Plummer and coworkers. However, the rate of dissolution of magnesite is approximately four orders of magnitude lower than calcite.

For simple carbonates, the elementary steps involved in the dissolution reaction are:

where M represents the metal ion which can be Ca, Mg and Ba. According to the stoichiometry of the three reaction steps and the thermodynamic constraints, the total forward and backward rates can be expressed as:

Rf=k1aH+k2aH2CO3*+K3
rb=k-1aM2+aHCO3-+k-2aHCO3-+k-3aM2+aCO32-

The rate constants (k1, k2, k3 and k−3) determined with our experimental results for calcite, aragonite and witherite show that the dissolution rates are similar for these three minerals and that the nature of the cations does not play a significant role. The good agreement between the Ksp calculated from the measured k3/k−3 ratio and the theromodynamic value suggests that our dissolution mechanism is coherent.

The rate dependence on pH of the dissolution of dolomite obeys a fractional order at low pH's and confirms previously published observations therein. However, the two-step reaction mechanism proposed does not explain the fractional reaction order observed, which is likely due to a more complex surface reaction.  相似文献   


19.
“皮壳—葡萄状”白云岩是一种非常特殊结构的白云岩。文中报道了塔里木盆地西北缘东二沟及塔北星火101井上震旦统奇格布拉克组中皮壳—葡萄状白云岩特征,并对其成因进行了探讨。皮壳状—葡萄状白云石中发育明、暗纤状白云石或纹层条带的含少量细晶的纤状—细粒状白云石以及肾状和葡萄状粉细晶白云石;由球形、杆形、孢子形等蓝细菌构成泡沫状结构;明暗、环带状橙红色光或中等橙红色光、核部发光较暗或不发光;与基质白云石相比,葡萄—皮壳状白云石δ13CPDB相似;但δ18OPDB正偏, 87Sr/86Sr 相对高(0.70887~0.70939)、但与震旦纪海水(0.7087~0.7094)相似,从皮壳边缘、暗色(蓝细菌)至核部,微区δ18OPDBδ13CPDB显示了环带内变化较小、环带外的强烈负漂移;云化程度的增加,δ18OPDBδ13CPDB负偏明显, 87Sr/86Sr 增加。皮壳—葡萄状白云岩中Al2O3 、Fe2O3 、MnO、LREE/HREE值均低于基质泥粉晶云岩对应值、稀土总量介于基质与粉细晶云岩之间,而Na2O+K2O、P2O5、 Sr、Hg、Cu、Sr/Ba、Sr/Mn、δCe值均高于基质泥粉晶云岩对应值;且随着云化程度的提高,总体呈现出Mn含量增加,Al2O3 、Fe2O3 、Na2O+K2O、P2O5、Sr/Ba、Fe/Mn等值递减的趋势;由此判断皮壳状—葡萄状白云石可能是弱还原、保存较好的海水中形成,或在成岩早期或浅埋藏孔隙海水为主的流体中形成、部分经历了较强的大气水作用改造。  相似文献   

20.
Based on data on the composition of ore-bearing hydrothermal solutions and parameters of ore-forming processes at various antimony and antimony-bearing deposits, which were obtained in studies of fluid inclusions in ore minerals, we investigated the behavior of Sb(III) in the system Sb–Cl–H2S–H2O describing the formation of these deposits.

We also performed thermodynamic modeling of native-antimony and stibnite dissolution in sulfide (mHS = 0.0001−0.1) and chloride (mCl = 0.1−5) solutions and the joint dissolution of Sb(s)0 and Sb2S3(s) in sulfide-chloride solution (mHS = 0.01; mCl = 1) depending on Eh, pH, and temperature. All thermodynamic calculations were carried out using the Chiller computer program. Under the above conditions, stibnite precipitates in acid, weakly acid to neutral, and medium redox solutions, whereas native antimony precipitates before stibnite under more reducing conditions in neutral to alkaline solutions.

The metal-bearing capacity of hydrothermal solutions (200–250 °C) of different compositions and origins has been predicted. We have established that the highest capacity is specific for acid (pH = 2–3) high-chloride solutions poor in sulfide sulfur and alkaline (pH = 7–8) low-chloride low-sulfide solutions.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号