首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We investigate the dark matter distributions in the central region of two clusters of galaxies (A1835 and MKW3S) using Chandra data. N-body simulations in the standard cold dark matter (CDM) model predict the dark matter distribution shows a cuspy dark matter profile: ρ(r) ∝ r, with in the range 1–2, while observations of dwarf and low surface brightness galaxies seem to favor the presence of a relatively flat core: 0 <  < 1. To investigate the dark matter distributions in the central region of clusters of galaxies, we analyze the Chandra data of A1835 and MKW3S with a deprojection method. We derive the mass profiles without the assumption of analytical models. We examine the inner slope of derived mass profiles assuming the dark matter profile is described with a power-law expression. The values of the slope are 0.95 ± 0.10 for A1835 and 1.33 ± 0.12 for MKW3S within the radius of 200 kpc. These are consistent with the result of the CDM simulations. However, within the radius of 100 kpc, the value of is less than unity for A1835 (0.47 ± 0.31). Our result implies that the central dark matter profile of some clusters cannot be described by CDM halos.  相似文献   

2.
Energetic outflows appear to occur in conjunction with active mass accretion onto supermassive black holes. These outflows are most readily observed in the 10% of quasars with broad absorption lines, where the observer’s line of sight passes through the wind. Until fairly recently, the paucity of X-ray data from these objects was notable, but now sensitive hard-band missions such as Chandra and XMM-Newton are routinely detecting broad absorption line quasars. The X-ray regime offers qualitatively new information for the understanding of these objects, and these new results must be taken into account in theoretical modeling of quasar winds.  相似文献   

3.
We derive bias-corrected X-ray luminosity functions (XLFs) of LMXBs detected in 14 E and S0 galaxies observed with Chandra. After correcting for incompleteness, the individual XLFs are statistically consistent with a single power-law. A break at or near LX,Eddington , as previously reported, is not required in any individual case. The combined XLF with a reduced error, however, suggests a possible break at LX = 5 × 1038 erg s−1, which may be consistent with the Eddington luminosity of neutron stars with the largest possible mass (3 M), or of He-enriched neutron star binaries. We confirm that the total X-ray luminosity of LMXBs is correlated with the the near-IR luminosities, but the scatter exceeds that expected from measurement errors. The scatter in LX(LMXB)/LK appears to be correlated with the specific frequency of globular clusters, as reported earlier.

We cross-correlate X-ray binaries with globular clusters determined by ground-based optical and HST observations in 6 giant elliptical galaxies. With the largest sample reported so far (300 GC LMXBs with a 5:2 ratio between red and blue GCs), we compare their X-ray properties, such as X-ray hardness, XLF and LX/LB and find no statistically significance difference between different groups of LMXBs. Regardless of their association with GCs, both GC and field LMXBs appear to follow the radial profile of the optical halo light, rather than that of more extended GCs. This suggests that while metallicity is a primary factor in the formation of LMXBs in GCs, there may be a secondary factor (e.g., encounter rate) playing a non-negligible role.  相似文献   


4.
The X-ray background intensity around galaxies and rich clusters of galaxies is investigated in three energy bands using the ROSAT All-Sky Survey maps. It is found that an amplitude of the XRB enhancements surrounding the Abell clusters and high density areas in the Lick galaxy counts depends on photon energy. Excess flux generated in the surrounding of the galaxy concentrations is consistent with the thermal emission by hot gas postulated by hydrodynamic simulations.  相似文献   

5.
We discuss the current status of ROSAT shadowing observations designed to search for emission from million degree gas in the halo of the Milky Way galaxy. Preliminary results indicate that million degree halo gas is observed in the 1/4 keV band in some directions, most notably toward the Draco cloud at (ℓ, b) = (92°, +38°), but that the halo emission is patchy and highly anisotropic. Our current understanding of this halo emission is based on a small handful of observations which have been analyzed to date. Many more observations are currently being analyzed or are scheduled for observation within the next year, and we expect our understanding of this component of the galactic halo to improve dramatically in the near future.  相似文献   

6.
We describe the initial results of a programme to detect and identify extended X-ray sources found serendipitously in XMM-Newton observations. We have analyzed 186 EPIC-PN images at high galactic latitude with a limiting flux of 1 × 10−14 erg cm−2 s−1 and found 62 cluster candidates. Thanks to the enhanced sensitivity of the XMM-Newton telescopes, the new clusters found in this pilot study are on the average fainter, more compact, and more distant than those found in previous X-ray surveys. At our survey limit the surface density of clusters is about 5 deg−2. We also present the first results of an optical follow-up programme aiming at the redshift measurement of a large sample of clusters. The results of this pilot study give a first glimpse on the potential of serendipitous cluster science with XMM-Newton based on real data. The largest, yet to be fulfilled promise is the identification of a large number of high-redshift clusters for cosmological studies up to z = 1 or 1.5.  相似文献   

7.
We present here new XMM-Newton observations of 3 relatively cool clusters at z ≈ 0.4, complemented by archival observations of 3 other clusters at similar redshift. We derived the MT and RT relations from the hydrostatic equation using an isothermal temperature distribution.  相似文献   

8.
Emission heights of coronal bright points on Fe XII radiance map   总被引:1,自引:0,他引:1  
The study of coronal bright points (BPs) is important for understanding coronal heating and the origin of the solar wind. Previous studies indicated that coronal BPs have a highly significant tendency to coincide with magnetic neutral lines in the photosphere. Here we further studied the emission heights of the BPs above the photosphere in the bipolar magnetic loops that are apparently associated with them. As BPs are seen in projection against the disk their true emission heights are unknown. The correlation of the BP locations on the Fe XII radiance map from EIT with the magnetic field features (in particular neutral lines) was investigated in detail. The coronal magnetic field was determined by an extrapolation of the photospheric field (derived from 2-D magnetograms obtained from the Kitt Peak observatory) to different altitudes above the disk. It was found that most BPs sit on or near a photospheric neutral line, but that the emission occurs at a height of about 5 Mm. Some BPs, while being seen in projection, still seem to coincide with neutral lines, although their emission takes place at heights of more than 10 Mm. Such coincidences almost disappear for emissions above 20 Mm. We also projected the upper segments of the 3-D magnetic field lines above different heights, respectively, on to the tangent xy plane, where x is in the east–west and y in the south–north direction. The shape of each BP was compared with the respective field-line segment nearby. This comparison suggests that most coronal BPs are actually located on the top of their associated magnetic loops. Finally, we calculated for each selected BP region the correlation coefficient between the Fe XII intensity enhancement and the horizontal component of the extrapolated magnetic field vector at the same xy position in planes of different heights, respectively. We found that for almost all the BP regions we studied the correlation coefficient, with increasing height, increases to a maximal value and then decreases again. The height corresponding to this maximum was defined as the correlation height, which for most bright points was found to range below 20 Mm.  相似文献   

9.
Using the new generation of X-ray observatories, we are now beginning to identify populations of close binaries in globular clusters, previously elusive in the optical domain because of the high stellar density. These binaries are thought to be, at least in part, responsible for delaying the inevitable core collapse of globular clusters and their identification is therefore essential in understanding the evolution of globular clusters, as well as being valuable in the study of the binaries themselves. Here, we present observations made with XMM-Newton of six globular clusters, in which we have identified neutron star low mass X-ray binaries and their descendants (millisecond pulsars), cataclysmic variables and other types of binaries. We discuss not only the characteristics of these binaries, but also their formation and evolution in globular clusters and their use in tracing the dynamical history of these clusters.  相似文献   

10.
We present BAX, Base de Données amas de galaxies X (http://webast.ast.obs-mip.fr/bax), a project aiming at building a comprehensive database dedicated to X-rays clusters of galaxies allowing detailed information retrieval. BAX provides the user with basic data published in the literature on X-rays clusters of galaxies as well as with information concerning the physical properties in the X-rays domain or at other wavelengths. BAX allows individual studies on selected clusters as well as building up homogenous samples, from known X-rays clusters for which selection criteria are chosen through web interfaces. We expect BAX to become a useful tool for astronomy community in order to optimize the cluster science return using data from both ground based facilities like MEGACAM (CFHT), VIRMOS (VLT) and space missions like XMM, Chandra and Planck.  相似文献   

11.
X-ray synchrotron emission tells us of the highest energy reached by accelerated electrons. In a few supernova remnants (SN 1006, G347.3-0.5) this is the dominant form of X-ray radiation, but in most it is superposed to the dominant thermal emission. Thanks to the spectro-imaging capability of Chandra and XMM-Newton, X-ray synchrotron emission has now been unambiguously detected in most young supernova remnants (Cas A, Tycho, Kepler). It arises in a very thin shell (a few arcsecs) at the blast wave. The thinness of that shell (much broader in the radio domain) implies that the high energy electrons cool down very fast behind the shock. The magnetic field that one deduces from that constraint is more than 100 μG behind the shock.  相似文献   

12.
We review new Chandra and HST observations of the core collapsed cluster NGC 6397 as a guide to understanding the compact binary (CB) populations in core collapse globulars. New cataclysmic variables (CVs) and main sequence chromospherically active binaries (ABs) have been identified, enabling a larger sample for comparison of the Lx, Fx/FV and X-ray vs. optical color distributions. Comparison of the numbers of CBs with Lx  1031 erg s−1 in 4 core collapse vs. 12 King model clusters reveals that the specific frequency SX (number of CBs per unit cluster mass) is enhanced in core collapse clusters, even when normalized for their stellar encounter rate. Although core collapse is halted by the dynamical heating due to stellar (and binary) interaction with CBs in the core, we conclude that production of the hardest CBs – especially CVs – is enhanced during core collapse. NGC 6397 has its most luminous CVs nearest the cluster center, with two newly discovered very low luminosity (old, quiescent) CVs far from the core. The active binaries as well as neutron star systems (MSP and qLMXB) surround the central core. The overall CB population appears to be asymmetric about the cluster center, as in several other core collapse clusters observed with Chandra, suggesting still poorly understood scattering processes.  相似文献   

13.
We present six ROSAT PSPC observations of Seyfert 1 galaxies chosen to have low Galactic line-of-sight absorption (NH 1020 cm−2). As expected, it is found that all of these sources possess significantly steeper spectra below 1 keV, than that observed at higher X-ray energies. In addition we find evidence for soft X-ray spectral features, which are best parameterized as line emission at 0.63 keV in NGC7469 and 0.75 keV in ESO198-G24. We examine these results in the light of the accuracy of the PSPC spectral calibration.  相似文献   

14.
We present results from the analysis of an XMM-Newton observation of the Seyfert 1 galaxy NGC 7469, the first high resolution X-ray spectrum of this source. The Reflection Grating Spectrometer (RGS) spectrum has several narrow absorption and emission lines of O, N, C and Ne, originating from gas at a range of ionisation parameters, from log ξ1.6 to log ξ−2 (where ξ has the units erg cm s−1). We demonstrate that the ionisation state of the warm emitter is consistent with that of the high-ionisation phase of the warm absorber, and compare the warm absorber in this object with those in other sources.  相似文献   

15.
Multiaperture photometry in V (5500Å), r (6738Å) and IV (10500Å) of 52 spirals in nearby clusters Virgo, Fornax and Grus and farther clusters Cancer, Zw 74-23 and Peg I in the redshift range up to 6000 Km s−1 was combined with HI width to derive three independant distances for each galaxy in these clusters.The plot between the mean distance of each cluster and its redshift, indicates the Hubble ratios of distant clusters Cancer, Zw 74-23 and Peg I are about 77 Km s−1 Mpc−1. Further, the Hubble ratios of distant clusters vary only from 76.3 to 78.9 Km s−1 Mpc−1 while those of nearby clusters Virgo, Fornax and Grus vary through a large range of 58.5 to 83.5 Km s−1 Mpc−1. We interpret these data by postulating a systematic motion toward Virgo for the Local Group.The best value for the global Hubble constant from farther and nearby clusters is derived as 74.3± 4 Km s−1 Mpc−1 and an average value of 289±60 Km s−1 for the infall velocity of the Local Group toward Virgo is also derived.  相似文献   

16.
Relativistic jets are a common property of radio-loud Active Galactic Nuclei (AGN). Understanding jet physical properties is an essential precursor to understanding the mechanisms of energy transport, and ultimately, how energy is extracted from the central black hole. In this paper, I highlight recent developments from Chandra and HST observations of kpc-scale jets in AGN, with particular emphasis on our survey of 17 radio jets in a sample of FRII radio galaxies. These observations show that (1) X-ray and optical emission is common from kpc-scale jets, (2) a large fraction of the bolometric luminosity is emitted at X-rays, and (3) in most sources, a candidate emission process for the X-rays is inverse Compton scattering of the Cosmic Microwave Background off the relativistic electrons in the jet. If the latter scenario holds, the implication is that jets are still relativistic on kpc scales.  相似文献   

17.
We discuss the detection of soft excess X-ray emission in a sample of 19 clusters of galaxies observed by XMM-Newton. In 6/19 clusters evidence for a soft X-ray excess is found. Four of these clusters show soft X-ray and O VII line emission from gas with a temperature of 0.2 keV. The centroid of this oxygen line is consistent with the redshift of the cluster. The intensity and spatial extend of the soft excess agrees with previous PSPC measurements. These observations are interpreted as emission from warm-hot intergalactic medium filaments, with density enhancements near the cluster centers, consistent with theoretical predictions. In the other two soft excess clusters a non-thermal origin is consistent with the data.  相似文献   

18.
In this study we explore physical scaling laws applied to solar nanoflares, microflares, and large flares, as well as to stellar giant flares. Solar flare phenomena exhibit a fractal volume scaling, V(L)  L1.9, with L being the flare loop length scale, which explains the observed correlation between the total emission measure EMp and flare peak temperature Tp in both solar and stellar flares. However, the detected stellar flares have higher emission measures EMp than solar flares at the same flare peak temperature Tp, which can be explained by a higher electron density that is caused by shorter heating scale height ratios sH/L ≈ 0.04–0.1. Using these scaling laws we calculate the total radiated flare energies EX and thermal flare energies ET and find that the total counts C are a good proxy for both parameters. Comparing the energies of solar and stellar flares we find that even the smallest observed stellar flares exceed the largest solar flares, and thus their observed frequency distributions are hypothetically affected by an upper cutoff caused by the maximum active region size limit. The powerlaw slopes fitted near the upper cutoff can then not reliably be extrapolated to the microflare regime to evaluate their contribution to coronal heating.  相似文献   

19.
MXB 0656-072 is an accreting X-ray pulsar with a Be star companion, showing notable emission in H. In October 2003 this system exhibited a large and extended X-ray outburst. RXTE observations during this outburst indicated a pulse period of 160.4 s and a cyclotron resonance scattering feature in the spectrum at 32 keV. This paper presents pulse profile analysis and phase-resolved X-ray spectroscopy of RXTE observations during this outburst.  相似文献   

20.
We present a series of monitoring observations of the ultrasoft broad-line Seyfert galaxy RE J2248-511 with XMM-Newton. Previous X-ray observations showed a transition from a very soft state to a harder state five years later. We find that the ultrasoft X-ray excess has re-emerged, yet there is no change in the hard power-law. Reflection models with a reflection fraction of 15, and Comptonisation models with two components of different temperatures and optical depths (kT1 = 83 keV, T1 = 30 eV, τ1 = 0.8; KT2 = 3.5 keV, T2 = 60 eV, τ2 = 2.8) can be fit to the spectrum, but cannot be constrained. The best representation of the spectrum is a model consisting of two blackbodies (kT1 = 0.09 ± 0.01 keV, kT2 = 0.21 ± 0.03 keV) plus a power-law (Γ = 1.8 ± 0.08). We also present simultaneous optical and infrared data showing that the optical spectral slope also changes dramatically on timescales of years. If the optical to X-ray flux comes primarily from a Comptonised accretion disk we obtain estimates for the black hole mass , accretion rate and inclination cos(i)  0.8 of the disk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号