首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 745 毫秒
1.
《Drying Technology》2013,31(4):975-988
ABSTRACT

The physicochemical and functional properties of convection oven- and freeze-dried gluten meals of two corn varieties were evaluated. The physicochemical properties (water solubility index, water absorption index, Hunter color parameters, and bulk density) and functional properties (water absorption, oil absorption, least gelation concentration, protein solubility, and emulsification properties) of convection-oven and freeze-dried corn gluten meals were compared with each other and soy flour. Freeze-dried corn gluten meals was observed to have lower bulk density (0.244–0.263 kg/m3) and was lighter in color (high L and ΔE) compared to their counterpart convection oven–dried gluten meals. Freeze-dried gluten meals from both corn varieties showed significantly higher oil absorption, water absorption, pH, emulsification, and protein solubility compared to oven-dried corn gluten meals. The gluten meals from both corn varieties had lower water absorption and bulk density but higher oil absorption than soy flour, suggesting the hydrophobic nature of corn proteins. Corn gluten meals formed thin (pourable) emulsions compared to soy flour emulsions, which were thick salad dressing type. Freeze- and convection oven–dried corn gluten meals showed significantly lower protein solubility measured at different pH than soy flour.  相似文献   

2.
The functional properties (protein solubility, emulsification characteristics, foaming characteristics, water- and fatbinding capacities) of extruded-expelled (EE) soy flours originating from six varieties of value-enhanced soybeans (high-sucrose, high-cysteine, low-linolenic, low-saturated FA, high-oleic, and lipoxygenase-null) and two commodity soybeans were determined. The soy flours varied in protein disperisibility index (PDI) and residual oil (RO), with PDI values ranging from 32 to 50% and RO values ranging from 7.0 to 11.7%. Protein solubility was reduced at pH values near the isoelectric region and was higher at both low and high pH. There were no significant differences for water-holding capacity, fat-binding capacity, emulsification activity, or emulsification stability. Only the high-oleic soy flour had significantly lower emulsification capacity. In general, the PDI and RO values of EE soy flours originating from value-enhanced and commodity soybeans had the greatest influence on protein functionality. The genetic modifications largely did not affect functional properties.  相似文献   

3.
Seera produced by different drying techniques was evaluated regarding its various physicochemical properties. The rheological properties of the batter showed a shear thinning behavior and Herschel–Bulkley model was best fitted with R2?=?0.9987. The results revealed that water absorption capacity increased as compared to the wheat flour and maximum absorption was found in freeze-dried seera (1.91?g?g?1), followed by oven-dried (1.62?g?g?1) and sun-dried (1.13?g?g?1). Oil absorption capacity of seera decreased as compared to wheat flour, with minimum values obtained for freeze-dried (0.93?g?g?1 of seera). Carbohydrate content increased significantly in seera sample to 81.76%, while fat, protein, and moisture content decreased significantly. L* values increased significantly, while as both a* and b* values decreased. Bulk density also showed an increasing trend with maximum value in freeze-dried seera. Transition temperatures changed significantly for the seera samples along with enthalpy of gelatinization. Fourier transform infrared pattern did not change with drying.  相似文献   

4.
Functional properties (solubility, foaming capacity and stability, emulsifying capacity, emulsion stability, heat coagulability, heat gelation and film formation) of protein extracted by 45% ethanol/55% 0.1 M NaOH from flaked, defatted, undergermed corn during the Sequential Extraction Process (SEP) were evaluated and compared with those of a laboratory-prepared soy protein concentrate. SEP is a new approach to corn fractionation that recycles the ethanol produced from the fermentation of cornstarch to unstream steps of protein extraction and the simultaneous extraction of corn oil and dehydration of the ethanol. Freeze-dried corn protein extracts contained at least 80% crude protein (dry basis), which is indicative of protein concentrates. SEP protein concentrates had solubilities in water of greater than 80% at pH values of 7 or above and were significantly more soluble than the soy protein concentrate at pH above 3. SEP corn proteins also showed better heat stabilities and greater emulsifying capacities and emulsion stabilities. Dilute dispersions (0.1%) of corn protein produced substantial but less stable foams. Corn proteins produced films similar to zein and soy protein films but were unable to form heat-induced gels. These results indicate that SEP produces a protein concentrate with functional properties suitable for food and industrial uses. Paper presented at the session on New Processes: Extractions and Purifications II, 83rd Annual Meeting of the AOCS, Toronto, May 10–14, 1992.  相似文献   

5.
Two types of protein isolates were prepared from de‐hulled yellow mustard flour by aqueous extraction, membrane processing and isoelectric precipitation. The precipitated and soluble protein isolates had 96.0 and 83.5% protein content on a moisture and oil free basis, respectively. Their functional properties were evaluated and compared with commercial soybean and other Brassica protein isolates. The soluble protein isolate exhibited high values for all properties. The precipitated protein isolate showed excellent oil absorption and emulsifying properties but poor solubility, water absorption and foaming properties due to its high lipid content (~25%). Storage temperature had limited effect on lipid oxidation, and hence the stability of the precipitated protein isolate at 25–45 °C. Flavor of wieners and bologna prepared with 2% of this isolate as binder was comparable to those prepared with soy protein isolate.  相似文献   

6.
7.
Solubility, foaming capacity and foam stability of denatured soy protein concentrate obtained from toasted flour were improved by proteolysis with fungal or bacterial proteases. Emulsifying capacity was unchanged, but emulsion stability decreased; bacterial protease highly improved oil absorption. Also, the bacterial protease was able to solubilize more protein and gave products which foamed more than those obtained with the fungal enzyme. However, the stabilizing properties of the bacterial modified soy protein concentrate at the air/water or oil/water interface were inferior. By limited hydrolysis up to degree of hydrolysis 10% most functional properties were improved without greatly reducing emulsion stability and water absorption.  相似文献   

8.
The effects of extraction temperature and preservation method on the functional properties of soy protein isolate (SPI) were determined. Four extraction temperatures (25, 40, 60, and 80 °C) were used to produce SPI and yields of solids and protein contents were determined. Three preservation methods were also tested (spray-drying, freeze-drying, and freezing–thawing) and compared to fresh (undried) samples for each extraction temperature. No differences in yields of solids and protein were observed among SPIs extracted at 25, 40, and 60 °C; however, SPI extracted at 80 °C yielded significantly less solids and protein. Extraction temperature significantly affected SPI functionality. As extraction temperature increased, solubility and emulsification capacity decreased; surface hydrophobicities, emulsification activities and stabilities, and dynamic viscosities increased; and foaming properties improved. Preservation method also significantly affected SPI functionality. Drying method did not affect the denaturation enthalpies of SPIs, but spray-dried SPIs had higher solubilities, surface hydrophobicities, and emulsification stabilities, and lower viscosities, emulsification activities and rates of foaming than freeze-dried SPI exhibited. Emulsification and foaming capacities and foaming stabilities were similar for both methods of drying. There was significant interaction between extraction temperature and preservation method for all functional properties except emulsification capacity.  相似文献   

9.
The production of food ingredients from undefatted soybeans by aqueous processing and isolation of protein from soy flour by ultrafiltration membranes has been demonstrated adequately during the past decade. These relatively new techniques offer significant advantages over conventional soy processing methods. Aqueous processing requires no petroleum-based solvent and consequently provides increased safety and flexibility of operation (because start-up and shutdown are safe and easy). It also provides opportunities for removal or deactivation of undesirable constituents of raw materials with appropriate water-soluble chemicals. It is, however, less efficient in oil extraction, and demulsification is required to recover clear oil when emulsions form. Ultrafiltration processes recover protein directly from soy flour extracts and thereby avoid generation of the whey which results from the conventional isoelectric precipitation. These processes have the advantages of increased isolate yield (as whey proteins are recovered in the isolate), and produce products having enhanced functionality and nitrogen solubility. The two processing techniques have subsequently been combined to obtain a single procedure with the advantages of each. Extracts from undefatted soybeans have been membrane processed with and without separating the oil to produce a variety of new soy protein ingredients.  相似文献   

10.
Limited hydrolysis of soy proteins with endo- and exoproteases   总被引:6,自引:3,他引:3  
Changes in the native state and functional properties of soy protein achieved by limited proteolysis of soy flour were investigated. Different enzyme-to-substrate ratios (E/S) were used to obtain low (3–5%) and medium (5–10%) degrees of hydrolysis (DH). Six protease preparations (three with predominately exopeptidase activities and three with predominately endopeptidase activities) were evaluated, and their effects on solubility, emulsification capacity, SDS-PAGE profiles, and denaturation enthalpies were characterized. Endoproteases (Multifect® Neutral, Protex? 6L, and Multifect® P-3000) and exoproteases (Fungal Protease Concentrate, Experimental Fungal Protease #1, and Experimental Fungal Protease #2) yielded similar increases in soy protein solubility. The modifications to the soy peptide profile were similar for the three exoprotease mixtures at a 1% E/S ratio, whereas the extent of hydrolysis with Protex? 6L was more pronounced than with the two other endoproteases (Multifect® Neutral and Multifect® P-3000). The emulsification capacity of protease-modified soy flour declined regardless of DH and enzyme type (exo- or endoprotease). After hydrolysis to >4% DH, denaturation enthalpies of glycinin and β-conglycinin decreased significantly, whereas hydrolysis to lower DH did not affect these values.  相似文献   

11.
高脂食品严重危害着人类健康,这引起人们对低脂食品的的不断追求,因此脂肪替代品的开发越来越受到人们重视。本试验以玉米油和生物高聚物为主要原料通过两步乳化法制备W1/O/W2多重乳状液作为脂肪替代品(FS),以离心稳定性为衡量标准,用显微镜直接观察,探讨了初复乳乳化工艺、各相相对体积比对玉米油W1/O/W2型多重乳状液体系稳定性的影响。结果表明:1.影响玉米油多重乳状液稳定性的主要因素有:复乳的乳化工艺,内水相与油相体积之比等。2.两步乳化工艺中第二步乳化工艺对复乳稳定性影响较大,其规律是随着乳化强度的提高,粒径减小,稳定性呈上升趋势,适宜的乳化条件为7200 r.min.1,13 min,而第一步乳化工艺对复乳稳定性几乎没有影响。3.内水相与油相、初乳与外水相均是影响复乳稳定性的主要因素,前者主要是依靠改变初乳黏度来影响复乳稳定性,后者主要是乳滴间范德华力与电排斥力共同作用的结果,适宜的体积比分别为1:4和1:1。  相似文献   

12.
Product characteristics of soya protein concentrates and isolates can be varied by using various processing treatments. These treatments can involve the use of enzymes, solvents, heat and pH adjustment, or combinations of these treatments to produce concentrates and isolates with the desired functional properties, such as water absorption, gelation, whipping ability, fat and oil emulsification, binding and varying degrees of protein solubility. The defatted soya flakes customarily used for the manufacture of concentrates and isolates are not segregated on the basis of variety. However, regional differences exist in the extractable protein content of the defatted flakes. Processing controls are essential in producing consistent quality and functional soya protein concentrates and isolates. Production parameters such as solvent treatment, desolventizing, enzyme treatment, heat, or pH adjustment of the soy flakes during processing must be stringently controlled to prevent variation in finished product characteristics and functionality.  相似文献   

13.
Soybean protein meals obtained by various oil extraction methods have different neutral oil content, and they may contain differnet amounts of polar lipids. Three soy protein meals obtained by different processing methods were extracted by two solvents consecutively, chloroform/methanol (2:1, vol/vol) and water-saturated butanol, for total lipid analysis. The organic flour (i.e., ground soybean) containted 15.52% total lipids; the high protein dispersibility index flour from extrusion-expelling processing and the white flour from conventional solvent extraction contained 11.20 and 1.84% total lipids, respectively. Organic flour contained more polar lipids than the other two protein meals on a dry-weight meal basis. Chloroform/methanol extracted most of the lipid from the meals, whereas water-saturated butanol resulted in an extract with more polar lipids than that from chloroform/methanol extraction.  相似文献   

14.
The functional properties of Caryodendron orinocense protein product were investigated and compared with those of soybean (Glycina maxima). The product protein content was 24.47 g/100 g (Nx6.25). Solubility increased at both sides of the isoelectric point (pH 4.0) and with increased NaCl concentration up to 0.5M. Compared with soybean flour (50% protein), the protein product exhibited higher water and oil absorption, but lower emulsifying activity, emulsion stability, foaming capacity, and foam stability, the last one increase at higher pH. Emulsifying activity, foaming capacity, and foam stability were ionic strength dependent. C. orinocense protein product increased its emulsifying activity steadily from 0.05M to 0.75M NaCl, while it remained almost constant for soybean flour. Foaming capacity increased drastically at pH 10. The minimum time and concentration to form a gel was 20% in 4 min and 10% in 8 min for the Caryodendron protein product and soybean flour, respectively. The bulk density was 0.5056+/-0.0041 g/mL.  相似文献   

15.
Previous studies have shown that ambient-temperature equilibrium, hexane extraction of soy flour yielded the same amount of oil as was extracted from soy flakes by conventional high-temperature processing. The oil obtained at ambient temperatures contained less phospholipid than commercial crude oils obtained by traditional processing. In this study, chemical composition, flavor and odor of soy flour obtained after oil extraction by the equilibrium procedure were evaluated before and after toasting. Results were compared with those obtained for commercial untoasted food-grade soy flakes. Chemical and sensory analyses were performed on soy protein concentrates (SPC) prepared from defatted flour, defatted toasted flour and commercial defatted white food-grade flakes. SPC were made by acid and ethanol-extraction methods. Ethanol extraction of soy flour produced SPC with similar protein, lipid and sensory qualities to those obtained from commercial flakes. Acid extraction produced SPC with more lipid than was obtained by ethanol extraction. Toasted soy flour and flakes had similar sensory properties, as did the SPC prepared from them.  相似文献   

16.
Cherng-Yuan Lin  Li-Wei Chen 《Fuel》2008,87(10-11):2154-2161
Emulsions have long been considered as an alternative fuel for combustion equipment in order to achieve better fuel economy and pollution reduction. While a mechanical homogenizing method is frequently used to prepare emulsions, the use of an ultrasonic emulsification method to do so is still rather limited, and is mostly applied to two-phase emulsions only. Hence, two-phase W/O and three-phase O/W/O emulsions, prepared by a mechanical homogenizer and an ultrasonic vibrator, respectively, were prepared and used as engine fuel. The emulsion properties, engine performance, and engine emission characteristics between these two emulsification methods were measured and compared. The potential of the ultrasonic emulsification method was also evaluated. The experimental results show that the emulsions prepared by the ultrasonic vibrator appeared to have more favorable emulsification characteristics such as smaller dispersed water droplets that were distributed more uniformly in the continuous oil phase, lower separation rate of water droplets from the continuous phase of diesel fuel and thus a lower separating rate of the dispersed water droplets from the emulsion, larger emulsion stability, and larger emulsion viscosity than the emulsions produced using a mechanical homogenizer. In addition, a larger content of water was emulsified when the emulsion was prepared using the ultrasonic vibrator than the mechanical homogenizer. The emulsions prepared by the ultrasonic vibrator also had a lower fuel consumption rate, lower bsfc, and significantly lower CO emission while at the same time having a larger black smoke opacity. When comparing the two-phase W/O and the three-phase O/W/O emulsions prepared by either the ultrasonic vibrator or the mechanical homogenizer, the two-phase W/O emulsions appeared to have a lower fuel consumption rate, bsfc, CO, and a lower black smoke opacity than the three-phase O/W/O emulsions, regardless of whether they were prepared by ultrasonic vibrator or mechanical homogenizer.  相似文献   

17.
Texturized soy protein (TSP) originating from varieties of value-enhanced soybeans and commodity soybeans, which were processed by extrusion-expelling, were incorporated into ground-beef patties. The soybean varieties included high-cysteine, low-linolenic, lipoxygenase-null, high-sucrose, low-saturated-fat, and high-oleic. The lower the bulk density was, the better the water-holding capacity of TSP. Neither property was affected by the protein dispersibility index or residual oil of the low-fat soy flours from which the TSP was prepared. All extruded-expelled processed flours from value-enhanced soybeans made acceptable TSP. The high-sucrose soybeans produced TSP with higher expansion and improved water-holding capacity. There were no differences in cooking properties or proximate compositions of patties for all treatments. Inside and outside colors were darker for the TSP-extended patties than for the all-beef control, and there was little difference among soybean varieties. The patties containing TSP had significantly more soy flavor and were harder than the all-beef control patties. Some TSP treatments produced more tender and less cohesive cooked patties than did the all-beef control.  相似文献   

18.
Limited hydrolysis (4% degree of hydrolysis) of extruded-expelled soy flour protein (protein dispersibility index=21) that was poor in solubility and other functional properties was evaluated at pilot-plant scale (5 kg of flour) with two endopeptidases and one exopeptidase. Some hydrolysates were merely spray-dried whereas others were jet-cooked at 104°C for 19 s before spray-drying. Solubility, emulsification capacity and stability, foaming capacity and stability, apparent viscosity, and sensory attributes were then characterized. The type of protease used and hydrothermal cooking affected functional and sensory properties. Protein solubility modestly increased with hydrolysis and jet cooking, but emulsification capacity decreased on hydrolysis and was not restored with hydrothermal cooking. Emulsion stability improved in the endopeptidase hydrolysates, but not in the exopeptidase hydrolysates. The foaming capacities of the hydrolysates for both types of enzymes were better than for the unhydrolyzed control. Highly stable foams were obtained after hydrolyzing with exopeptidase and hydrothermal cooking. Ten percent protein hydrolysate dispersions showed large losses in consistency coefficient apparent viscosity, which increased significantly with hydrothermal cooking only for the unhydrolyzed control. Difference-from-control sensory evaluation indicated that both jet-cooked and non-jet-cooked enzyme hydrolysates were different from unhydrolyzed controls.  相似文献   

19.
Soy protein concentrates (SPC) and soy protein isolates (SPI) were produced from hexane-defatted soy white flakes and from two extruded-expelled (EE) soy protein meals with different degrees of protein denaturation. Processing characteristics, such as yield and protein content, and the key protein functional properties of the products were investigated. Both acid-and alcohol-washed SPC from the two EE meals had higher yields but lower protein contents than that from white flakes. Generally, SPC from an acid wash had much better functional properties than those from an alcohol wash. The SPI yield was highly proportional to the protein dispersibility index (PDI) of the starting material, so the EE meal with lower PDI had lower SPI recovery. The protein content in SPI prepared from EE meals was about 80%, which was lower than from white flakes. Nevertheless, SPI from EE meals showed functional properties similar to or better than those from white flakes. The low protein contents in SPC and SPI made from EE meals were mainly due to the presence of residual oil in the final products. SPI made from EE meals had higher concentration of glycinin relative to β-conglycinin than that from white flakes.  相似文献   

20.
Mapuey (Dioscorea trifida), is a tropical America tuber, which is appreciated for its taste and fine texture. It has not been fully cultivated in Venezuela, even though products like its flour and starch could replace conventional used products. In this work physical and chemical characteristic of flours from mapuey (varieties white and purple), were assessed, as well as some of their micronutrients. Physical, physicochemical and rheological properties, and chemical composition of isolated starches were also evaluated. Flours were obtained by a drying process and starches by aqueous extraction. Chemical analysis was performed following standard methodologies. The flour yield of purple mapuey was the highest, as was its protein content. The minerals content, showed significant differences between both varieties, presenting purple variety a higher content. Isolated starches showed high purity, this was corroborated by the scanning electron microscopy which showed irregular shaped granules (oval and elongated), with truncated end and smooth surfaces. Purple mapuey granules were smaller. Both varieties exhibited a B type diffraction pattern. The greater swelling power and water absorption capacity was presented by white mapuey, while the highest solubility was shown by the purple one. The white mapuey had maximum viscosity, as well as the highest value of breakdown, suggesting more fragile granules. Setback was lower in the white mapuey, suggesting lower tendency to retrogradation. The purple mapuey although, it showed a higher amylose content, presented lower consistency, even though the difference was not relevant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号