首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
近年来提出的燃煤电厂大气污染物超低排放标准对CFB锅炉的污染物治理提出了更高的要求。为解耦CFB锅炉高效脱硫和低NO_x排放之间的矛盾,需要更加深入了解钙基脱硫剂对含氮反应的影响。目前普遍认为,石灰石脱硫和NO_x排放2个过程,通过各含钙化合物相互转化和对含氮反应选择性催化构成一个整体,而影响其中任一环节的因素都可能使最终NO_x排放量发生变化。笔者围绕CFB燃烧条件下NO_x基本反应,各含钙化合物间相互转化规律和表面选择性含氮催化反应性,以及烟气组分、温度和配风等影响因素,阐述了钙基脱硫的影响。通常,投放钙基脱硫剂会导致NO_x排放量升高,N_2O排放量降低,这是多方面因素共同作用的结果,如CaO催化挥发分氮氧化生成NO、促进CO等还原性气体氧化消耗、促进N_2O分解等。而脱硫产物CaSO_4及CaS等也对NO还原表现出明显的催化活性,实践发现基于钙基脱硫和喷氨脱硝的同步脱硫脱硝技术是可行的。未来还需进一步定量研究石灰石脱硫与NO_x排放之间的相互作用规律,并在此基础上开发一体化脱硫脱硝技术,以期实现CFB锅炉NO_x和SO_2的双超低排放。  相似文献   

2.
为考察不同燃料在小区域供暖炉具中的NO_x排放特性,分别以原煤和洁净型煤为燃料进行了燃烧试验;结果表明,相比燃用原煤,洁净型煤可以降低NO_x排放33%,实现炉内降氮的目的;单个洁净型煤在层燃炉具燃烧中经历了动力燃烧、过渡燃烧、扩散燃烧、燃尽等4个过程,在燃烧中通过贫氧气氛抑制、还原性气体和焦炭还原等过程降低NO_x,具有自还原NO_x的作用。  相似文献   

3.
因固有的低污染物排放控制成本优势,循环流化床(CFB)锅炉已成为商业化程度最好的洁净煤燃烧技术之一。随着超低排放标准的提出,CFB燃烧技术也面临巨大挑战。为满足超低排放标准,通常要使用烟气净化处理装置,导致CFB锅炉污染控制成本显著增加。如何低成本实现CFB锅炉NO_x与SO_2原始超低排放成为关注焦点。系统论述了现有CFB超低NO_x和SO_2排放技术、最新开发的CFB超低NO_x燃烧技术、炉内CFB超低SO_2排放技术和CFB超低NO_x、SO_2协同控制技术等。研究表明:开发高效分离器不仅可提升CFB燃烧效率,也是保证超细石灰石高效脱硫的前提,分离器效率越高,CFB燃烧效率和超细石灰石脱硫效率越高;随着循环流化床锅炉的大型化发展,炉膛截面越来越大,如何实现超细石灰石在大型炉膛内横向的均匀混合成为第1个技术难点;控制单一气体使其满足超低排放的技术相对成熟,但如何协同控制NO_x和SO_2使之满足超低排放标准成为第2个技术难点;现阶段CFB炉内超低排放技术仅针对某些特定的燃料可达到超低排放,针对其他常规燃料,NO_x和SO_2能否达到超低排放仍需要进一步深入研究。  相似文献   

4.
循环流化床预热燃烧过程中,预热燃料在下行燃烧室的燃烧过程至关重要。为了研究预热燃料在下行燃烧室中的流动和燃烧特性,采用计算流体力学软件Fluent,结合试验手段,对不同二次风喷口配风方式下,预热燃料在下行燃烧室的燃烧过程进行试验及数值模拟,对比了不同配风方式下,流动特性、温度特性、组分浓度分布特性以及氮氧化物排放特性的差异。结果表明,预热燃料在下行燃烧室的燃烧过程中,二次风会卷吸烟气在下行燃烧室上部产生回流,稀释反应物,在中心喷口配风时回流区域更大。不同配风方式下,下行燃烧室中的温度分布不同。环形喷口配风时下行燃烧室中的温度峰值为1 459 K,而中心喷口配风时下行燃烧室的温度峰值为1 555 K,同时环形喷口配风时下行燃烧室的高温区域较小,温度分布更加均匀。环形喷口配风时,预热燃料和二次风的混合更加充分,高温煤气和空气的反应更加强烈,有助于燃料的着火及升温。而中心喷口配风时下行燃烧室顶部的CO和H_2等还原性气体浓度较高,有助于还原NO_x。同时较高的温度促进了气化反应,生成更多的CO和H_2,在燃尽风喷入前的区域形成还原性气氛,有助于进一步还原NO_x。二次风中心喷口配风时,更多的氮氧化物被还原,尾部烟气中的NO_x排放浓度为107×10~(-6),二次风环形喷口配风时,尾部烟气中的NO_x排放浓度为121×10~(-6)。  相似文献   

5.
针对褐煤燃烧过程中产生的NO及还原气体,采用热重红外联用技术研究尾矿加入后褐煤燃烧特性、NO生成量及还原气体的变化.结果表明,尾矿的加入对水分析出温度和挥发分燃烧温度的影响较小,但焦炭的起始燃烧温度相对降低,促进了焦炭燃烧阶段的进行.褐煤燃烧过程产生的还原气体主要为CH_4,NH_3,CO及脂肪烃类(—CH_2),尾矿的加入催化了NO与还原气体的反应,低温条件下以NH_3还原NO为主,且尾矿催化存在选择性,其对CO还原NO的催化强度较其他几种气体弱.  相似文献   

6.
选择性催化还原(SCR)烟气脱硝技术在催化剂的作用下,利用还原剂有选择性地与烟气中的NO_x反应并生成无毒无污染的N_2和H_2O,来减少NO_x排放的技术。  相似文献   

7.
在焦炭燃烧过程中,焦炭颗粒会对产生的氮氧化物起到一定的异相催化还原作用,但其机理仍不明确。基于焦炭颗粒内部有不同碳基和发达的孔隙结构,根据焦炭颗粒在富氧气氛下燃烧的特性,建立了焦炭氮转化的分子动力学模型和多种气体传质模型。使用FORTRAN语言编程模拟了不同富氧气氛下粒径为100μm的单颗粒焦炭的燃尽过程。结果表明:燃烧初期颗粒内部NO出现短暂的积聚现象,颗粒内部的还原能力较弱,随着反应的进行及温度的升高,还原能力增强,由于缺氧而产生了CO气体,有利于NOx的还原。对比了环境温度为1 200℃时,O2和CO2的体积分数比分别为20∶80,25∶75,30∶70的不同气氛下焦炭颗粒内部NO,CO和N2等气体的体积分数,表明O2和CO2的体积分数比为25∶75的气氛是最佳气氛,既保证了焦炭颗粒的高效燃烧,又有利于增强焦炭颗粒的还原能力。  相似文献   

8.
循环流化床(CFB)发电技术具有良好的炉内脱硫抑氮等优势,得到了广泛推广。随着环保形势的日趋严峻,CFB锅炉仅依靠炉内低氮燃烧无法满足NO_x超低排放要求,因此必须深入研究CFB锅炉炉内低氮燃烧理论,并在660 MW高效超超临界CFB锅炉实现突破。基于流态重构节能型CFB锅炉的设计理念,通过试验和数值模拟研究了炉内NO_x生成还原机理与炉内实现NO_x全部脱除的技术方案。结果表明,影响660 MW超临界CFB锅炉NO_x排放的因素包括:燃用煤质、燃烧温度及均匀性、过量空气系数(运行氧含量)、分级燃烧等。660 MW超超临界CFB锅炉采用单炉膛、单布风板、M型布置、4个旋风分离器、4个外置式换热器的炉型结构,锅炉热一次风从水冷风室后侧6点给入,保证了锅炉一次风静压分布均匀,进而保证了物料流化均匀性;采用"前墙给煤、后墙给煤泥"的给煤方式,前墙布置12个落煤口,后墙布置8支煤泥枪,同时后墙布置8点排渣,保证给煤均匀性;采用4旋风分离器布置结构保证了物料均匀性,不同旋风分离器之间流率偏差的最大值为7.9%;采用4个外置式换热器均匀布置保证床温的均匀性。同时炉内温度场及过量空气系数对NO_x排放起关键作用,锅炉设计床温确定为860℃,既保证了锅炉效率,又减少了NO_x排放,同时保证低负荷工况下满足选择性非催化还原(SNCR)脱硝系统反应温度窗口;锅炉过量空气系数选取1.15,进一步增强了还原性氛围。分级燃烧时一、二次风比例为4∶6,并适当调整锅炉二次风口位置及倾角,形成较大的还原性氛围。通过上述措施可实现炉内高效抑氮,最终使锅炉NO_x原始排放浓度低于50 mg/m3,炉外选取以尿素为还原剂的SNCR技术为辅助脱硝手段,在低投资、低成本、全负荷条件下实现最终烟气中NO_x超低排放。  相似文献   

9.
随着火电厂烟气污染物排放标准的日益严格,循环流化床(CFB)锅炉多采用低氮燃烧技术在燃烧阶段降低NO_x的生成,但低氮燃烧应用会使炉内局部气氛,尤其是密相区的氧含量降低1%~4%,CO等还原性气氛增加1%~2%。固硫反应在不同氧浓度及还原性气氛条件下会表现出不同的反应路径,从而影响整个固硫反应速率和不同固硫产物的生成,导致最终固硫率的不同。因此CFB锅炉中引入低氮燃烧条件后会对炉内钙基固硫过程产生一定的影响。为了明晰低氮燃烧条件对CFB炉内钙基固硫反应的影响,保证燃烧中同时降低SO_2和NO_x的排放浓度,实现CFB锅炉中低氮燃烧技术与钙基固硫技术的耦合,综述了低氮燃烧反应条件对CFB锅炉炉内钙基固硫过程影响的研究现状,分别阐述了整个固硫过程中低氮还原性气氛及氧化-还原交变气氛条件对固硫剂煅烧、固硫剂固硫及固硫产物的分解转化3个不同反应阶段的影响。结果表明:CO_2浓度变化对CaCO_3煅烧影响较大且研究较多,气氛中CO_2的分压会直接减弱煅烧反应进行的程度;O_2和CO浓度变化对CaCO_3煅烧的影响未见报告,但从理论上推断影响较小,仍需进一步试验证明。在低氮燃烧形成的氧化-还原交变气氛下,炉内固硫反应过程变得复杂。氧气消失后,固硫率会降低20%左右,随着还原性气氛中CO含量的增加,固硫率还会进一步降低;随着CO等还原性气氛的增强,固硫产物CaSO_4稳定性降低,分解温度降低,CaS稳定性增强。但氧化、还原交变气氛下固硫产物的转化机制研究表明,当形成以CaS为内核,CaSO_4为外壳的固硫产物时,钙利用率和固硫效率会有所提高。可见,低氮燃烧气氛对硫化反应的影响具有不确定性。由于硫化反应的复杂性和固硫产物的不稳定性,目前尚无明确的针对不同固硫剂与反应温度和反应气氛的最佳匹配结果。因此,提出需进一步探究石灰石、电石渣等钙基固硫剂在不同氧浓度气氛及不同程度还原性气氛条件下的固硫反应机制,明确低氮燃烧条件对钙基固硫过程的影响,最终获得CFB锅炉低氮燃烧与炉内钙基固硫两者有机结合的优化反应条件,为实际生产提供可靠的理论依据。  相似文献   

10.
利用气相色谱仪对若干条隧道窑进行了必要测定,结果表明:离窑气体中几乎不含CO和H_2,不完全燃烧成分只有少量的CH_4。在还原气氛中,CO/H_2的比值在1.66~1.89的范围内。CH_4无论在还原带、预热带前部和烟道里,其含量都很低。从预热带前部烟气的测定得知,还原气氛烟气中的CO和H_2经过氧化阶段已燃烧完全,离窑烟气中不完全燃烧热损失主要来自两方面:烟气中可燃气体CH_4和固定碳粒子。  相似文献   

11.
烧结烟气是钢铁工业污染物的最大排放源,现阶段冶金脱硫除尘工艺逐渐成熟,但NO_x的脱除仍处于起步阶段,部分企业存在NO_x排放超标现象,随着环保指标进一步提高,优化NO_x治理工艺,降低冶金烟气中NO_x排放成为钢铁行业污染治理的重中之重,应当给予更多重视。介绍了烧结过程中N的作用机理,其中挥发性氮参与氧化还原反应,高温低氧条件促进还原反应生成N_2,抑制NO_x生成,同时高温促进焦炭氮吸附及异相还原反应;总结烧结烟气特点,其成分较为复杂、污染物含量高、含水量和含氧量大、烟气温度较低导致对SCR催化剂温度窗口要求较低,这些特点进一步制约烧结烟气治理的发展;对比分析了当前几种典型脱硝工艺及烧结烟气脱硝技术存在的问题,SCR脱硝法为当前主流脱硝工艺,催化剂的催化活性组分和性能是该技术的核心和关键,也是近年来的研究热点,指出稀土改性含铁尘泥γ-Fe_2O_3新型铁基低温催化剂是确实可行的脱硝催化剂研究方向,具有抗碱金属中毒、低温催化活性好、经济可靠等特点,并可进一步扩大冶金资源利用范围;展望了脱硝发展方向和新工艺,等离子脱硝和微生物脱硝研究起步相对较晚,但由于其受烟气温度影响较小可达到较好脱硝效果,具备优异发展前景,但存在若干问题未实现工程应用;改善工艺如引进烟气再循环、空气分级燃烧、低氧燃烧等燃烧中控制技术,通过优化烧结混合料结构如强化制粒效果、厚料层高碱度烧结等可协调烧结后烟气脱硝工艺,降低烟气NO_x排放浓度;分级治理烧结烟气存在投资运行费用高、占地面积大等缺点,开发可靠经济高效的脱硫脱硝一体化工艺具有重要意义,脱硫工艺耦合SCR脱硝是烧结烟气污染物治理发展的重要方向;通过参考脱硫脱硝新技术和新思路,提出烟气再循环+CO催化氧化+SCR脱硝+CFB/SDA脱硫的工艺流程,可为钢铁厂脱硝技术研究及发展提供参考。  相似文献   

12.
空气分级燃烧是广泛采用的煤粉低氮燃烧技术,使用数值模拟方法对其进行模拟预测,有助于燃烧设备的改进并优化燃烧,实现在燃烧中进一步降低污染物排放。空气分级燃烧数值模拟中对还原区的准确模拟是预测氮氧化物排放、硫化氢高温腐蚀等的基础。笔者旨在提出一种合理预测煤粉空气分级燃烧还原性气氛的数值模拟方案,并将其应用于实际锅炉的模拟,并探讨了还原性气氛预测准确性对氮氧化物排放、焦炭燃烧等的影响。主要内容包括:①对煤粉空气分级燃烧过程进行原理分析,提出数值模型开发及其应用的研究思路,即是通过小型电加热沉降炉模拟实际锅炉分级燃烧温度和组分浓度场,测量组分、焦炭转化等参数用于模型开发和验证,最后将开发的模型嵌入商用数值模拟平台,实现分级燃烧全过程模拟。基于此,搭建了能够反映实际锅炉空气分级燃烧温度场和组分浓度场特性的电加热沉降炉试验平台,并通过在线称重给煤速率、气体浓度组分测量,对试验系统的稳定性进行了验证。②设计不同工况的空气分级燃烧试验,并获取沿程CO、H_2、焦炭转化率等关键数据,基于数值模拟的动力学优化方法获取空气分级燃烧状态下还原区焦炭的气化反应动力学参数。通过开发用户自定义函数的方式在Fluent平台上实现了焦炭气化以及还原性气氛的模拟预测,并将其应用于600 MWe超临界墙式对冲炉分级燃烧的数值模拟。③分析比较了在模拟中不考虑气化和考虑气化时对炉内温度、还原区气氛、氮氧化物的分布和焦炭转化的影响。结果表明,文中提出的空气分级燃烧数值模拟方案能实现对实际锅炉空气分级燃烧特别是还原区的合理预测;在模拟中不考虑焦炭气化将导致还原性气体浓度明显偏低,导致颗粒燃尽推迟,炉膛出口氮氧化物浓度偏高。  相似文献   

13.
随着水泥行业“超低排放”的推进,NOx排放要求逐步向100mg/m3甚至50mg/m3看齐。水泥窑碳基脱硝通过控制煤粉燃烧产生焦炭和CO还原NOx,具有无须添加脱硝剂、避免氨逃逸、与生产流程结合良好、改造和运行成本低的优势,可作为水泥行业实现“超低排放”的辅助工艺。本文首先介绍了碳基脱硝的主要实施方式,包括回转窑低氮燃烧、分解炉分级燃烧和增设还原区等。然后讨论了焦炭和CO还原NOx的特性和机制。焦炭还原效果与其比表面积和活性位点有关。CO还原反应可在无催化条件下发生,但CO体积分数小于1%时效果可以忽略。焦炭、CaO和煤灰等可作为催化剂,将CO还原NO的温度窗口下限从900℃降低至600~800℃。最后综述了CO对选择性非催化法(SNCR)的影响及其机制,认为碳基脱硝与氨基脱硝具有耦合协同潜质。水泥窑碳基脱硝的进一步研究可以关注以下方面:在更为全面和系统的工况下评价脱硝特性,试验和理论结合明确脱硝机制,开发碳基与氨基协同脱硝技术等。  相似文献   

14.
以气体、液体、固体等各种形态存在的CO2,在工业和国民经济各部门具有广泛的应用价值。据统计,全世界各种矿物燃料(煤、石油、天然气)燃烧排放到大气中的CO2量达到185亿t/a(CEN报道为242亿t/a),而用于生产液体CO2、合成尿素和甲醇等产品的年消费量均不足1亿吨。这不仅造成了资源的严重浪费,而且加剧了人类赖以生存的地球的温室效应。在各种对温室效应产生作用的因素中,CO2的作用占49%。因此,以往作为废气排放的CO2的回收、  相似文献   

15.
耿矿法 《中国陶瓷》1990,(6):31-32,52
一、前言当前,窑炉气氛对陶瓷产品性能的影响已引起了人们的普遍重视.就目前已知的报道来看,人们对窑炉气氛的认识大多只限于气氛中O_2、CO、CO_2、H_2、H_2O的含量对其氧化还原性能及坯釉烧结性能的影响,并取得了一定的成果.但是,因为窑炉气氛组成不仅与燃料、空气、燃烧过程有关,而且与被烧结体和匣钵等因素在高温下的物理化学反应有关.这样,窑炉气体成分就远非O_2、CO、CO_2、H_2、H_2O、N_2等,还应包括窑内高温下可以扩散挥发的一切成分,如Fe、Cu、P等等.由于  相似文献   

16.
流化床中燃烧高水高氮酒糟的NO排放特性   总被引:1,自引:1,他引:0       下载免费PDF全文
采用流化床反应器,研究富水蒸气条件下酒糟燃烧的NO排放特性。结果表明,增加过量空气系数和升高燃烧温度,NO排放浓度升高;对送入燃烧反应器的气体中添加水蒸气模拟高水分燃料燃烧有效地降低了酒糟燃烧的NO排放浓度及总排放量,且在适当条件下可减少NO排放约46%(质量)。酒糟灰分中的金属氧化物对NO的还原有催化作用,且随着温度的升高变强。在含H2或CO的N2气氛中,灰分对NO催化还原作用更明显。水蒸气本身对NO没有明显还原作用,说明水蒸气是通过与碳氢化合物反应生成还原性气体,如H2和CO,从而在酒糟灰催化作用下强化NO的还原。  相似文献   

17.
基于O_2/CO_2气氛下焦炭燃烧的复杂气固反应,提出多种碳基随机孔模型(Various Char-RPM)模拟焦炭颗粒燃烧过程,对影响其竞争效应的因素进行分析.结果表明,焦炭燃烧竞争效应主要发生在动力扩散控制区,此时颗粒孔隙中的气体浓度明显波动,燃烧不稳定.提高环境中O_2浓度和减小焦炭颗粒粒径均可弱化和消除竞争效应,减小粒径的效果更明显.  相似文献   

18.
选取青霉素菌渣在微型流化床反应分析仪中进行了快速热解实验,研究了热解产物随温度的变化规律,并采用等转化率法和模型配合法对实验数据进行回归拟合,求算反应动力学参数,分析反应机理。结果表明:随热解温度升高,气体产量增加,焦炭产量减少,生物油的产量先增加后减少,在600℃左右时达到最大值,约为33.5%。而且温度的升高加快气体产物的转化速率,其中对CO和CH_4转化速率的影响要比H_2和CO_2明显。利用等温法求算出的气体产物(H_2、CH_4、CO_2和CO)的活化能平均值分别为20.88kJ/mol、39.81 kJ/mol、23.39kJ/mol和10.27kJ/mol,生成CH_4、H_2、CO_2、CO的难度依次下降;同一产物不同转化率下的活化能存在差异,表明不同反应阶段有不同的反应机理。热解过程中生成CH_4的反应符合1.5级化学反应,而H_2、CO和CO_2的生成符合2级化学反应。  相似文献   

19.
陈国民 《中氮肥》2002,(1):21-22
CO是有机化工的重要原料,是碳一化学的基础.通过羰基化合成可制得一系列化工产品,如甲酸、醋酸、草酸、DMF、TDI等.在羰基化反应中,由于对CO原料气纯度要求较高,因此制取高纯度的CO气体,对于发展碳一化学及其下游产品有着重要意义.CO的制取通常有以下途径:一是通过焦炭的部分燃烧或CO2焦炭还原方法制得CO,再通过净化、分离得到成品气;另一种方法是直接从富含CO的气源(如水煤气、半水煤气、铜洗再生气等)中分离提取高纯度的CO.对于有气源的企业,利用提纯技术获得高纯度CO应是经济合理的方法.  相似文献   

20.
以平庄瑞安褐煤为研究对象,通过热重试验确定褐煤燃烧阶段温度范围,利用管式炉程序升温系统进行煤样氧化自燃试验,得到风量分别为40、80、120、160和200 m L/min条件下的气体;为确定优选指标气体的关联度大小,采用灰色关联法对其进行分析。结果表明:褐煤燃烧阶段温度为247~433℃,408℃左右达到快速燃烧状态。当风量恒定时,CO_2/ΔO_2、CO/ΔO_2、C_2H-4与温度的关联度比CO、C_2H_6、C_2H_4/C_2H_6高。随风量不断增加,指标气体与温度的关联度:CO_2/ΔO_2最大,其次是CO/ΔO_2、C_2H_4和CO,C_2H_6和C_2H_4/C_2H_6最小。故可将CO_2/ΔO_2、CO/ΔO_2和C_2H_4作为主要指标,CO作为辅助指标用于预测煤矿井下封闭火区燃烧状态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号