首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Summary The miscibility behaviour of poly(methoxymethyl methacrylate) (PMOMA) and poly(methylthiomethyl methacrylate) (PMTMA) with poly(vinylidene fluoride) (PVDF) was examined by differential scanning calorimetry. PMOMA/PVDF blend system was judged to be miscible on the bases of the presence of a single, composition-dependent glass transition for the blend and a pronounced melting point depression of the PVDF component. Furthermore, lower critical solution temperature (LCST) behaviour was observed for all PMOMA/PVDF blends. PMTMA/PVDF blends were found to be immiscible. Based on the melting point depression of PVDF in PMOMA/PVDF blends, the interaction parameter B was found to be -14.5 J/cm3.  相似文献   

2.
A phase diagram of poly(vinylidene fluoride) (PVDF) and acrylic rubber (ACM) was plotted, and the effects of the extent of miscibility on the mechanical properties of the polymer blends were examined. A compressible, regular solution model was used to forecast the phase diagram of this blend. The model prediction, the lower critical solution temperature (LCST) over the upper critical solution temperature (UCST), was done qualitatively according to the experimentally determined phase diagram by differential scanning calorimetry (DSC), optical microscopy, and rheological analysis. These experimental methods showed that this system was miscible in ACM‐rich blends (>50% ACM) and partially miscible in PVDF‐rich blends. A wide‐angle X‐ray diffraction study revealed that PVDF/ACM blends such as neat PVDF had a characteristic α‐crystalline peak. The partially miscible blends displayed up to 350% elongation at break; this was a significant increment of this parameter compared to that of neat PVDF(20%). However, the miscible blends showed elongation of up to 1000% [again, a remarkable increase compared to chemically crosslinked ACM (220%)] and displayed excellent mechanical properties and tensile strength and a large elongation at break. For the miscible and partially miscible blends, two different mechanisms were responsible for this improvement in the mechanical properties. It was suggested that in the partially miscible blends, the rubbery depletion layer between the spherulite and the conventional rubber cavitations mechanism were responsible for the increase in the elongation at break, whereas for the miscible blends, the PVDF spherulite acted as a crosslinking junction. The stretched part of the tensile samples in the partially miscible blends showed characteristic β‐crystalline peaks in the Fourier transform infrared spectra, whereas that in the miscible blends showed α‐crystalline peaks. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1247‐1258, 2013  相似文献   

3.
Jia-Hsien Lin 《Polymer》2006,47(19):6826-6835
Crystalline/crystalline blend systems of poly(ethylene oxide) (PEO) and a homologous series of polyesters, from poly(ethylene adipate) to poly(hexamethylene sebacate), of different CH2/CO ratios (from 3.0 to 7.0) were examined. Correlation between interactions, miscibility, and spherulite growth rate was discussed. Owing to proximity of blend constituents' Tg's, the miscibility in the crystalline/crystalline blends was mainly justified by thermodynamic and kinetic evidence extracted from characterization of the PEO crystals grown from mixtures of PEO and polyesters at melt state. By overcoming experimental difficulty in assessing the phase behavior of two crystalline polymers with closely spaced Tg's, this work has further extended the range of polyesters that can be miscible with PEO. The interaction parameters (χ12) for miscible blends of PEO with polyesters [poly(ethylene adipate), poly(propylene adipate), poly(butylene adipate), and poly(ethylene azelate) with CH2/CO = 3.0-4.5] are all negative but the values vary with the polyester structures, with a maximum for the blend of PEO/poly(propylene adipate) (CH2/CO = 3.5). The values of interactions are apparently dependent on the structures of the polyester constituent in the blends; interaction strength for the miscible PEO/polyester systems correlate in the same trend with the PEO crystal growth rates in the blends.  相似文献   

4.
The miscibility of high molecular weight poly(ethylene oxide) blends with poly(3‐hydroxypropionic acid) and poly(3‐hydroxybutyric acid) (P(3HB)) has been investigated by differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA) and high‐resolution solid state 13C nuclear magnetic resonance (NMR). The DSC thermal behaviour of the blends revealed that the binary blends of poly(ethylene oxide)/poly(3‐hydroxypropionic acid) (OP blends) were miscible over the whole composition range while the miscibility of poly(ethylene oxide)/poly(3‐hydroxybutyric acid) blends (OB blends) was dependent on the blend composition. OB blends were found to be partly miscible at the middle P(3HB) contents (25 %, 50 %) and miscible at other P(3HB) contents (10 %, 75 % and 90 %). Single‐phase behaviour for OP blends and phase separation behaviour for OB blends were observed from DMTA. The results from NMR spectroscopy revealed that the two components in the OP50 blend were intimately mixed on a scale of about 35 nm, while the domain sizes in the OB blend with a P(3HB) content of 50 % were larger than about 32 nm. © 2000 Society of Chemical Industry  相似文献   

5.
ABSTRACT

We demonstrate the influence of fluorine interface to the crystallization of poly(vinylidene fluoride) (PVDF)/silicone rubber (SR)/fluororubber (FKM) tertiary dynamic curing blends. In contrast to PVDF/SR binary blend, the average size of PVDF spherulites turns smaller and the crystallization rate is lower in PVDF/SR/FKM tertiary blend when more fluororubber component was added into the blends at the same crystallization temperature. Incorporation of FKM does not change the crystalline form of PVDF in the blends. The resulting mechanical properties of tensile strength, flexural strength, Izod impact strength and elongation at break for PVDF/SR/FKM tertiary blends are enhanced compared with PVDF/SR binary blend.  相似文献   

6.
The crystallization behaviors of miscible poly(vinylidene fluoride)/poly(butylene succinate) (PVDF/PBS) and its blend composites with carbon nanotubes (CNTs) during non‐isothermal and isothermal processes were investigated. The results showed that CNTs acted as heterogeneous nucleation agents and further improved the nucleation ability of PBS and PVDF in blends. However, compared with the nucleation effects of CNTs in PBS/CNT or PVDF/CNT binary composites, the nucleation effect of CNTs in miscible PVDF/PBS was largely restricted and nucleation efficiency was lowered. A reasonable explanation about the restricted nucleation ability of CNTs was studied from the viewpoint of interfacial interactions between polymer components and CNTs, in which a preferential affinity of CNTs to PBS was found. Further combined with the preparation method, it is proposed that PVDF chains adsorbed on the CNT surface in the master batch were peeled off from the CNTs by incorporated PBS chains, due to the better interaction between PBS and CNTs. Finally, the PVDF chains at the interface were diluted by PBS, and most of the CNT surface was covered by PBS chains, giving rise to the nucleation of PBS on the CNTs. On the other hand, unremoved PVDF still adsorbed on the CNT surface and crystallized. Compared with PVDF/CNT and PBS/CNT binary composites, the nucleation density in the ternary composites was greatly lowered, resulting in restricted nucleation effects of CNTs. On the other hand, the preferable adsorption of PBS on CNTs induced an apparent phase fluctuation in the PVDF/PBS blend composites, which also reflected the selective adsorption of PBS on the CNT surface. © 2016 Society of Chemical Industry  相似文献   

7.
Yongjin Li  Yuko Oono  Hiroshi Shimizu 《Polymer》2006,47(11):3946-3953
The miscibility for melt-mixed poly(vinylidene fluoride) (PVDF)/acrylic rubber (ACM) blends and the crystal morphology of PVDF in the blends were investigated over the whole composition ranges by dynamic mechanical analysis (DMA), wide-angle X-ray diffraction (WAXD), small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM). DMA measurements revealed that PVDF is miscible with ACM in ACM-rich system, and partially miscible in PVDF-rich system. Two kinds of PVDF lamellar structures with different long periods were detected by SAXS and TEM for the partially miscible blends. In the miscible system, only one kind of crystal lamellae with enlarged long period is found. The two kinds of lamellar structures in the blend show different orientation behavior during the uniaxial stretching to result in a biaxial orientation. The lamellae with short long period are oriented vertical to the stretching direction, while those with large long period were found to be oriented parallel to the stretching direction.  相似文献   

8.
JE Yoo  CK Kim 《Polymer International》2004,53(12):1950-1956
The isothermal miscibility map and phase‐separation temperatures caused by lower critical solution temperature‐type phase behavior for blends of poly[2,2,‐propane‐bis{4‐(2‐methyl phenyl)} carbonate]‐poly[2,2,‐propane‐bis{4‐(2,6‐dimethyl phenyl)} carbonate] (DMPC‐TMPC) with poly[(styrene)‐co‐(methyl methacrylate)] (SMMA) copolymers have been determined. SMMA copolymers containing equal to or less than 37 wt% MMA formed miscible blends with DMPC‐TMPC copolycarbonates containing equal to or more than 60 wt% TMPC. The observed phase‐separation temperatures indicate that the miscibility decreases as the DMPC content in DMPC‐TMPC increases, while addition of MMA to the styrene initially increases miscibility with DMPC‐TMPC but ultimately leads to immiscibility. The binary interaction energies involved in these blends were calculated from the phase boundaries using the lattice‐fluid theory combined with the binary interaction model. The spinodal temperatures predicted from the lattice‐fluid theory using the calculated interaction energies are similar to the experimental phase‐separation temperatures. Copyright © 2004 Society of Chemical Industry  相似文献   

9.
A new method has been developed to determine the probability of miscibility in binary polymer blends through hydrodynamic interaction. This is achieved by the measurement of the free volume content in blends of carefully selected systems—styrene acrylonitrile (SAN)/poly(methyl methacrylate) (PMMA), PMMA/poly(vinyl chloride) (PVC), and PVC/polystyrene (PS)—with positron annihilation lifetime spectroscopy. The free volume content can predict the miscible/immiscible nature of the blends but provides no information on the extent of miscibility for different compositions of the blends. We have generalized a model used to understand the viscometric behavior of polymer/solvent systems to polymer/polymer systems through the free volume approach. This model provides two important parameters: a geometric factor (γ) and a hydrodynamic interaction parameter (α). γ depends on the molecular architecture, whereas α accounts for the excess friction at the interface between the constituents of the blend, and we propose that α can serve as a precursor to miscibility in a system and indicate which composition produces a high probability of miscibility. The efficacy of this proposition has been checked with measured free volume data for the three blend systems. The SAN/PMMA system produces a maximum α value of ?209 at 20% PMMA; PVC/PMMA produces a maximum α value of ?57 at 10% PMMA. Interestingly, for the PS/PVC system, α is close to zero throughout the entire concentration range. Therefore, we infer that α is perhaps an appropriate parameter for determining the composition‐dependent probability of miscibility in binary blend systems. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

10.
Fourier transform infrared (FTIR) spectroscopy, optical microscopy (OM), and differential scanning calorimetry (DSC) techniques were used to probe phase behavior and interactions in blends of poly(vinylidene fluoride) (PVDF) and polyesters [poly(trimethylene adipate) (PTA) and poly(pentamethylene adipate) (PPA)] of relatively low crystallizability. DSC thermal analysis and OM characterization proved that PVDF was miscible with PTA and PPA with a low lower critical solution temperature. Small negative values of the interaction parameters (χ12 = ?0.13 for a PVDF/PPA blend) were obtained with the melting‐point depression method. FTIR spectroscopy results revealed that interactions between ? CF2 of PVDF and the ? C?O group of the polyester were weak, in agreement with the thermal analysis results. An increase in the coarseness and/or ring‐band spacing further provided supportive evidence that miscibility did exist between the polyester and PVDF constituents in the blends. Pattern changes in ring‐band spherulites of the miscible blends further substantiated the favorable, though weak, interactions between the PVDF and polyester constituents. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

11.
The miscibility behavior and hydrogen bonding of ternary blends of bisphenol A (BPA)/poly(vinyl acetate) (PVAc)/poly(vinyl pyrrolidone) (PVP) were investigated by using differential scanning calorimetry and Fourier transform infrared spectroscopy (FTIR). The BPA is miscible with both PVAc and PVP based on the observed single Tg over the entire composition range. FTIR was used to study the hydrogen-bonding interaction between the hydroxyl group of BPA and the carbonyl group of PVAc and PVP at various compositions. Furthermore, the addition of BPA is able to enhance the miscibility of the immiscible PVAc/PVP binary blend and eventually transforms into miscible blend with single Tg, when a sufficiently quantity of the BPA is present due to the significant Δχ and the ΔK effect.  相似文献   

12.
Y. KimJ.E. Yoo  C.K. Kim 《Polymer》2003,44(18):5439-5447
The phase behavior of dimethyl polycarbonate-tetramethyl polycarbonate (DMPC-TMPC) blends with poly(styrene-co-acrylonitrile) copolymers (SAN) and the interaction energies of binary pairs involved in blend has been explored. DMPC-TMPC copolycarbonates containing 60 wt% TMPC or more were formed miscible blends with SAN containing limited amounts of AN. The miscibility of copolycarbonate with SAN decreases as the DMPC content increases. The miscible blends showed the LCST-type phase behavior or did not phase separate until thermal degradation. The binary interaction energies involved in the miscible blends were calculated from the phase boundaries using the lattice-fluid theory combined with binary interaction model. The phenyl ring substitution with methyl groups did not lead to interactions that are favorable for miscibility with polyacrylonitrile (PAN). The interaction energies of the polycarbonates blends with SAN copolymers as a function of AN content were obtained. It was revealed that the incline of the number of methyl groups on the phenyl rings of bisphenol-A unit acts favorably for the miscibility with SAN copolymer when SAN contains less than about 30 wt% AN and shifts the most favorable interaction to the low AN content.  相似文献   

13.
Ternary blends composed of matrix polymer poly(vinylidene fluoride) (PVDF) with different proportions of poly(methyl methacrylate) (PMMA)/poly(vinyl pyrrolidone) (PVP) blends were prepared by melt mixing. The miscibility, crystallization behavior, mechanical properties and hydrophilicity of the ternary blends have been investigated. The high compatibility of PVDF/PMMA/PVP ternary blends is induced by strong interactions between the carbonyl groups of the PMMA/PVP blend and the CF2 or CH2 group of PVDF. According to the Fourier transform infrared and wide‐angle X‐ray difffraction analyses, the introduction of PMMA does not change the crystalline state (i.e. α phase) of PVDF. By contrast, the addition of PVP in the blends favors the transformation of the crystalline state of PVDF from non‐polar α to polar β phase. Moreover, the crystallinity of the PVDF/PMMA/PVP ternary blends also decreases compared with neat PVDF. Through mechanical analysis, the elongation at break of the blends significantly increases to more than six times that of neat PVDF. This confirms that the addition of the PMMA/PVP blend enhances the toughness of PVDF. Besides, the hydrophilicity of PVDF is remarkably improved by blending with PMMA/PVP; in particular when the content of PVP reaches 30 wt%, the water contact angle displays its lowest value which decreased from 91.4° to 51.0°. Copyright © 2011 Society of Chemical Industry  相似文献   

14.
The miscibility and effect of physical aging on the crystallization behavior of poly(l ‐lactic acid) (PLLA)/poly(3‐hydroxybutyrate) (PHB) blends with a small amount of PHB (≤10 wt%) have been investigated using differential scanning calorimetry and Fourier transform infrared spectroscopy. It is found that the miscibility of PLLA/PHB blends with a very small percentage of PHB can be modulated by varying the molecular weight of the PHB. That is, a PLLA/PHB blend with low‐molecular‐weight PHB is miscible, whereas that with high‐molecular‐weight PHB is immiscible. It is found that physical aging at temperatures far below the glass transition temperature can promote the cold crystallization kinetics of PLLA in PLLA/PHB blends with high‐molecular‐weight PHB rather than in those with low‐molecular‐weight PHB. These findings suggest that the effect of physical aging on the crystallization behavior of the main component in a crystalline/crystalline blend with a small percentage of the second component is strongly dependent on the miscibility of the blend system. Enhanced chain mobility of PLLA in the interface region of PLLA matrix and PHB micro‐domains is proposed to explain the physical aging‐enhanced crystallization rate in immiscible PLLA/PHB blends with high‐molecular‐weight PHB. © 2013 Society of Chemical Industry  相似文献   

15.
The important effect that even a small change in the nature of the side chain of a component of a blend has in its miscibility level was observed in a series of blends of phenoxy (Ph) with poly(methacrylates). Thus, while the Ph/poly(methyl methacrylate) blends are miscible and the Ph/poly(ethyl methacrylate) blends partially miscible, Ph/poly(butyl methacrylate) blends were almost fully immiscible. The observed miscibility of Ph/poly(butylmethyl methacrylate) indicates that the change in a component of a miscible blend of some pendant units that give rise to miscibility, by those from a different second component, which give rise to immiscibility is less important. The observed decrease in the strength of the β secondary transition of Ph was clearly related to the miscibility level of the blends. The negative effects on properties of a very low molecular weight material can be overcame by blending with a miscible second component, rendering the overall molecular weight of the blend above the critical value. The change in the nature of the side chain, apart from the negative effect on fracture properties such as ductility, also had considerable effect on the short‐term mechanical properties such as modulus of elasticity and yield stress. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2978–2986, 2000  相似文献   

16.
The miscibility behavior of ternary blends of poly (vinyl phenol) (PVPh)/poly (vinyl pyrrolidone) (PVP)/poly (ethyl methacrylate) (PEMA) was investigated mainly with calorimetry. PVPh is miscible with both PVP and PEMA on the basis of the single Tg observed over the entire composition range. FTIR was used to study the hydrogen bonding interaction between the hydroxyl group of PVPh and the carbonyl group of PVP and PEMA at various compositions. Furthermore, the addition of PVPh is able to enhance the miscibility of the immiscible PVP/PEMA and eventually transforms it into a miscible blend, especially when the ratio between PVP/PEMA is 3:1, probably because of favorable physical interaction. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1205–1213, 2006  相似文献   

17.
Films of a binary polymer blend comprising of hydrophobic poly(vinylidene fluoride) (PVDF) and hydrophilic poly(vinylpyrrolidone) (PVP) have been prepared by solution-casting. The dependence of surface structure and composition of the films on the PVP content in the blend was investigated by using atomic force microscope (AFM), XRD, XPS, SEM and differential scanning calorimeter (DSC). It has been found that the interaction between the two homopolymers prevents PVDF from crystallization in the blend, the net result of which has a primary effect on the surface properties of the films. PVP has a greater concentration at the surface than in the bulk as long as PVDF crystallizes in the bulk during the film formation process, which leaves a thermodynamically non-equilibrium surface state. On the other hand, with an increase in the PVP content, the interaction between segmental PVDF and PVP in the beginning transforms the crystalline state of PVDF from α to γ phase, and finally results in the disappearance of crystalline PVDF phases. A meager crystallization of PVDF segments could still carry on at the surface of a film with a miscible (or an amorphous) bulk; this occurrence makes the surface more hydrophobic than its bulk phase.  相似文献   

18.
A quantitative analysis method for the distribution of noncrystalline poly(butadiene) component in poly(ε-caprolactone)/poly(butadiene) (PCL/PB) binary blends have been analyzed by advance application of Raman spectroscopy, optical microscopy, and differential scanning calorimetry (DSC) techniques. Thin films of different compositions of PCL/PB binary blends were prepared from solution and isothermally crystallized at a certain temperature. After calibration with real data, quantitative analyses by Raman spectroscopy revealed the amorphous PB are trapped inside the PCL crystals. Polarized optical microscopy and real time atomic force microscopy were used to collect data for the crystal morphology and crystal growth rate. For pure PCL crystals, a morphology of truncated lozenge shape was observed, independent of crystallization temperature and regardless of the blends compositions. For the pure PCL and their blends, almost unique crystal growth rate was found. The miscibility behaviors using DSC were drawn through melting point depression method. The Hoffman-Weeks extrapolations of the blends were found to be linear and identical with those of the neat PCL. The interaction parameter for the blends indicating that the PCL and PB blends have no intermolecular interaction, confirming the blends are immiscible. Despite the immiscibility of the blend, the PCL crystals do not bend during the growth process and do not reduce the growth rate as they do for miscible blend systems.  相似文献   

19.
The miscibility behavior of various poly(p-methylstyrene-co-methacrylonitrile) (pMSMAN)/poly(alkyl methacrylate)s blends was studied using differential scanning calorimetry. pMSMAN is miscible with poly(methyl methacrylate), poly(ethyl methacrylate), poly(n-propyl methacrylate), poly(isopropyl methacrylate), and poly(n-butyl methacrylate) over certain copolymer composition ranges, but is immiscible with poly(isobutyl methacrylate) and poly(n-amyl methacrylate). The width of the miscibility window decreases with increasing size of the pendant ester group of the poly(alkyl methacrylate), and is wider than that of the corresponding poly(p-methylstyrene-co-acrylonitrile) blend system. Various segmental interaction parameters are calculated using a binary interaction model. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
The effect of end groups (2NH2) of poly(ethylene glycol) (PEG) on the miscibility and crystallization behaviors of binary crystalline blends of PEG/poly(L ‐lactic acid) (PLLA) were investigated. The results of conductivity meter and dielectric analyzer (DEA) implied the existence of ions, which could be explained by the amine groups of PEG gaining the protons from the carboxylic acid groups of PLLA. The miscibility of PEG(2NH2)/PLLA blends was the best because of the ionic interaction as compared with PEG(2OH, 1OH‐1CH3, and 2CH3)/PLLA blends. Since the ionic interaction formed only at the chain ends of PEG(2NH2) and PLLA, unlike hydrogen bonds forming at various sites along the chains in the other PEG/PLLA blend systems, the folding of PLLA blended with PEG(2NH2) was affected in a different manner. Thus the fold surface free energy played an important role on the crystallization rate of PLLA for the PEG(2NH2)/PLLA blend system. PLLA had the least fold surface free energy and the fast crystallization rate in the PEG(2NH2)/PLLA blend system, among all the PEG/PLLA systems studied. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号